1. javascript奇数偶数
1到100所有奇数的和等于2500.
这实际上就是阶梯数的连续垒加,这种阶梯连续垒加的公式就是:最小数加最大数的和乘以加数的个数再除以2.
在1到100中,最小奇数是1,最大奇数是99,而奇数的个数是50,所以,可以根据上述公式列算式:
(1+99)×50÷2
=100×50÷2
=5000÷2=2500.
因此,1到100所有奇数的和等于2500.
2. js奇数和偶数
1.基本尺寸小于或等于1mm时,基本偏差A和B及大于IT8的N均不采用。
2.JS的偏差= iTn/2,式中,ITn是IT值数。公差带JS7至JS11,若ITn值数是奇数, 则取偏差=(iTn-)/2 。
3.对小于或等于IT8的K、M、N和小于或等于IT7的P至ZC,所需值从公差表内右侧选取。
4.特殊情况:250~315mm段的M6,ES=-9μm(代替-11μm)。
3. 奇数+奇数=偶数举例子
数学上任意奇数都可写作2k+1的形式,任意偶数都可写作2k的形式,假设有一个数即是奇数又是偶数那么他既可以写成2k+1又能写成2k,2k+1=2k,化简为0=1,显然与数学基础相悖,故不存在一个数即是奇数又是偶数。0已经广泛被人们接受为偶数,正整数和负整数都可以以是否为2的整数倍的标准来分为奇数和偶数,不存在一个数既是2的整数倍又不是2的整数倍-。-这个道理就和不存在一个人既是男的又不是男的一样
4. Java奇数偶数
单链表结构:
Java中单链表采用Node实体类类标识,其中data为存储的数据,next为下一个节点的指针:
package com.algorithm.link;
/**
* 链表结点的实体类
*
*/
public class Node {
Node next = null;//下一个结点
int data;//结点数据
public Node(int data){
this.data = data;
}
}
链表常见操作:
package com.algorithm.link;
import java.util.Hashtable;
/**
* 单链表常见算法
*
*/
public class MyLinkedList {
/**链表的头结点*/
Node head = null;
/**
* 链表添加结点:
* 找到链表的末尾结点,把新添加的数据作为末尾结点的后续结点
* @param data
*/
public void addNode(int data){
Node newNode = new Node(data);
if(head == null){
head = newNode;
return;
}
Node temp = head;
while(temp.next != null){
temp = temp.next;
}
temp.next = newNode;
}
/**
* 链表删除结点:
* 把要删除结点的前结点指向要删除结点的后结点,即直接跳过待删除结点
* @param index
* @return
*/
public boolean deleteNode(int index){
if(index<1 || index>length()){//待删除结点不存在
return false;
}
if(index == 1){//删除头结点
head = head.next;
return true;
}
Node preNode = head;
Node curNode = preNode.next;
int i = 1;
while(curNode != null){
if(i==index){//寻找到待删除结点
preNode.next = curNode.next;//待删除结点的前结点指向待删除结点的后结点
return true;
}
//当先结点和前结点同时向后移
preNode = preNode.next;
curNode = curNode.next;
i++;
}
return true;
}
/**
* 求链表的长度
* @return
*/
public int length(){
int length = 0;
Node curNode = head;
while(curNode != null){
length++;
curNode = curNode.next;
}
return length;
}
/**
* 链表结点排序,并返回排序后的头结点:
* 选择排序算法,即每次都选出未排序结点中最小的结点,与第一个未排序结点交换
* @return
*/
public Node linkSort(){
Node curNode = head;
while(curNode != null){
Node nextNode = curNode.next;
while(nextNode != null){
if(curNode.data > nextNode.data){
int temp = curNode.data;
curNode.data = nextNode.data;
nextNode.data = temp;
}
nextNode = nextNode.next;
}
curNode = curNode.next;
}
return head;
}
/**
* 打印结点
*/
public void printLink(){
Node curNode = head;
while(curNode !=null){
System.out.print(curNode.data+" ");
curNode = curNode.next;
}
System.out.println();
}
/**
* 去掉重复元素:
* 需要额外的存储空间hashtable,调用hashtable.containsKey()来判断重复结点
*/
public void distinctLink(){
Node temp = head;
Node pre = null;
Hashtable<Integer, Integer> hb = new Hashtable<Integer, Integer>();
while(temp != null){
if(hb.containsKey(temp.data)){//如果hashtable中已存在该结点,则跳过该结点
pre.next = temp.next;
}else{//如果hashtable中不存在该结点,将结点存到hashtable中
hb.put(temp.data, 1);
pre=temp;
}
temp = temp.next;
}
}
/**
* 返回倒数第k个结点,
* 两个指针,第一个指针向前移动k-1次,之后两个指针共同前进,
* 当前面的指针到达末尾时,后面的指针所在的位置就是倒数第k个位置
* @param k
* @return
*/
public Node findReverNode(int k){
if(k<1 || k>length()){//第k个结点不存在
return null;
}
Node first = head;
Node second = head;
for(int i=0; i<k-1; i++){//前移k-1步
first = first.next;
}
while(first.next != null){
first = first.next;
second = second.next;
}
return second;
}
/**
* 查找正数第k个元素
*/
public Node findNode(int k){
if(k<1 || k>length()){//不合法的k
return null;
}
Node temp = head;
for(int i = 0; i<k-1; i++){
temp = temp.next;
}
return temp;
}
/**
* 反转链表,在反转指针钱一定要保存下个结点的指针
*/
public void reserveLink(){
Node curNode = head;//头结点
Node preNode = null;//前一个结点
while(curNode != null){
Node nextNode = curNode.next;//保留下一个结点
curNode.next = preNode;//指针反转
preNode = curNode;//前结点后移
curNode = nextNode;//当前结点后移
}
head = preNode;
}
/**
* 反向输出链表,三种方式:
* 方法一、先反转链表,再输出链表,需要链表遍历两次
* 方法二、把链表中的数字放入栈中再输出,需要维护额外的栈空间
* 方法三、依据方法2中栈的思想,通过递归来实现,递归起始就是将先执行的数据压入栈中,再一次出栈
*/
public void reservePrt(Node node){
if(node != null){
reservePrt(node.next);
System.out.print(node.data+" ");
}
}
/**
* 寻找单链表的中间结点:
* 方法一、先求出链表的长度,再遍历1/2链表长度,寻找出链表的中间结点
* 方法二、:
* 用两个指针遍历链表,一个快指针、一个慢指针,
* 快指针每次向前移动2个结点,慢指针一次向前移动一个结点,
* 当快指针移动到链表的末尾,慢指针所在的位置即为中间结点所在的位置
*/
public Node findMiddleNode(){
Node slowPoint = head;
Node quickPoint = head;
//quickPoint.next == null是链表结点个数为奇数时,快指针已经走到最后了
//quickPoint.next.next == null是链表结点数为偶数时,快指针已经走到倒数第二个结点了
//链表结点个数为奇数时,返回的是中间结点;链表结点个数为偶数时,返回的是中间两个结点中的前一个
while(quickPoint.next != null && quickPoint.next.next != null){
slowPoint = slowPoint.next;
quickPoint = quickPoint.next.next;
}
return slowPoint;
}
/**
* 判断链表是否有环:
* 设置快指针和慢指针,慢指针每次走一步,快指针每次走两步
* 当快指针与慢指针相等时,就说明该链表有环
*/
public boolean isRinged(){
if(head == null){
return false;
}
Node slow = head;
Node fast = head;
while(fast.next != null && fast.next.next != null){
slow = slow.next;
fast = fast.next.next;
if(fast == slow){
return true;
}
}
return false;
}
/**
* 返回链表的最后一个结点
*/
public Node getLastNode(){
Node temp = head;
while(temp.next != null){
temp = temp.next;
}
return temp;
}
/**
* 在不知道头结点的情况下删除指定结点:
* 删除结点的重点在于找出其前结点,使其前结点的指针指向其后结点,即跳过待删除结点
* 1、如果待删除的结点是尾结点,由于单链表不知道其前结点,没有办法删除
* 2、如果删除的结点不是尾结点,则将其该结点的值与下一结点交换,然后该结点的指针指向下一结点的后续结点
*/
public boolean deleteSpecialNode(Node n){
if(n.next == null){
return false;
}else{
//交换结点和其后续结点中的数据
int temp = n.data;
n.data = n.next.data;
n.next.data = temp;
//删除后续结点
n.next = n.next.next;
return true;
}
}
/**
* 判断两个链表是否相交:
* 两个链表相交,则它们的尾结点一定相同,比较两个链表的尾结点是否相同即可
*/
public boolean isCross(Node head1, Node head2){
Node temp1 = head1;
Node temp2 = head2;
while(temp1.next != null){
temp1 = temp1.next;
}
while(temp2.next != null){
temp2 = temp2.next;
}
if(temp1 == temp2){
return true;
}
return false;
}
/**
* 如果链表相交,求链表相交的起始点:
* 1、首先判断链表是否相交,如果两个链表不相交,则求相交起点没有意义
* 2、求出两个链表长度之差:len=length1-length2
* 3、让较长的链表先走len步
* 4、然后两个链表同步向前移动,没移动一次就比较它们的结点是否相等,第一个相等的结点即为它们的第一个相交点
*/
public Node findFirstCrossPoint(MyLinkedList linkedList1, MyLinkedList linkedList2){
//链表不相交
if(!isCross(linkedList1.head,linkedList2.head)){
return null;
}else{
int length1 = linkedList1.length();//链表1的长度
int length2 = linkedList2.length();//链表2的长度
Node temp1 = linkedList1.head;//链表1的头结点
Node temp2 = linkedList2.head;//链表2的头结点
int len = length1 - length2;//链表1和链表2的长度差
if(len > 0){//链表1比链表2长,链表1先前移len步
for(int i=0; i<len; i++){
temp1 = temp1.next;
}
}else{//链表2比链表1长,链表2先前移len步
for(int i=0; i<len; i++){
temp2 = temp2.next;
}
}
//链表1和链表2同时前移,直到找到链表1和链表2相交的结点
while(temp1 != temp2){
temp1 = temp1.next;
temp2 = temp2.next;
}
return temp1;
}
}
}
测试类:
package com.algorithm.link;
/**
* 单链表操作测试类
* @author bjh
*
*/
public class Test {
public static void main(String[] args){
MyLinkedList myLinkedList = new MyLinkedList();
//添加链表结点
myLinkedList.addNode(9);
myLinkedList.addNode(8);
myLinkedList.addNode(6);
myLinkedList.addNode(3);
myLinkedList.addNode(5);
//打印链表
myLinkedList.printLink();
/*//测试链表结点个数
System.out.println("链表结点个数为:" + myLinkedList.length());
//链表排序
Node head = myLinkedList.linkSort();
System.out.println("排序后的头结点为:" + head.data);
myLinkedList.printLink();
//去除重复结点
myLinkedList.distinctLink();
myLinkedList.printLink();
//链表反转
myLinkedList.reserveLink();
myLinkedList.printLink();
//倒序输出/遍历链表
myLinkedList.reservePrt(myLinkedList.head);
//返回链表的中间结点
Node middleNode = myLinkedList.findMiddleNode();
System.out.println("中间结点的数值为:"+middleNode.data);
//判断链表是否有环
boolean isRinged = myLinkedList.isRinged();
System.out.println("链表是否有环:" + isRinged);
//将链表的最后一个结点指向头结点,制造有环的效果
Node lastNode = myLinkedList.getLastNode();
lastNode.next = myLinkedList.head;
isRinged = myLinkedList.isRinged();
System.out.println("链表是否有环:" + isRinged);
//删除指定结点
Node nk = myLinkedList.findReverNode(3);
System.out.println(nk.data);
myLinkedList.deleteSpecialNode(nk);
myLinkedList.printLink();
//链表是否相交
//新链表
MyLinkedList myLinkedList1 = new MyLinkedList();
myLinkedList1.addNode(1);
myLinkedList1.addNode(2);
myLinkedList1.printLink();
System.out.println("链表一和链表二是否相交"+myLinkedList.isCross(myLinkedList.head, myLinkedList1.head));
//把第二个链表从第三个结点开始接在第二个链表的后面,制造相交的效果
myLinkedList1.findNode(2).next = myLinkedList.findNode(3);
myLinkedList1.printLink();
System.out.println("链表一和链表二是否相交"+myLinkedList.isCross(myLinkedList.head, myLinkedList1.head));
*/
//如果两个链表相交求链表相交的结点的值
MyLinkedList myLinkedList1 = new MyLinkedList();
myLinkedList1.addNode(1);
myLinkedList1.addNode(2);
myLinkedList1.findNode(2).next = myLinkedList.findNode(3);
myLinkedList1.printLink();
Node n = myLinkedList1.findFirstCrossPoint(myLinkedList, myLinkedList1);
if(n == null){
System.out.println("链表不相交");
}else{
System.out.println("两个链表相交,第一个交点的数值为:" + n.data);
}
}
}
5. 代码判断奇数偶数
分奇数位和偶数位,若某数是2的倍数,它就是偶数(双数),可表示为2n若非它就是奇数(单数),可表示为2n+1(n为整数)。奇数除以任何一个整数(不论偶数抑或奇数),其商并非必然是奇数或偶数,亦没有一定规律。偶数情况亦然。
关于偶数和奇数,有下面的性质:
1、两个连续整数中必是一个奇数一个偶数;
2、奇数与奇数的和或差是偶数;偶数与奇数的和或差是奇数;任意多个偶数的和都是偶数;单数个奇数的和是奇数;双数个奇数的和是偶数;
3、两个奇(偶)数的和或差是偶数;一个偶数与一个奇数的和或差一定是奇数。
6. js判断奇偶数的程序代码
1.基本尺寸小于或等于1mm时,基本偏差A和B及大于IT8的N均不采用。
2.JS的偏差= iTn/2,式中,ITn是IT值数。公差带JS7至JS11,若ITn值数是奇数, 则取偏差=(iTn-)/2 。3.对小于或等于IT8的K、M、N和小于或等于IT7的P至ZC,所需值从公差表内右侧选取。4.特殊情况:250~315mm段的M6,ES=-9μm(代替-11μm)。