数据挖掘分析案例(数据分析与数据挖掘案例)

虚拟屋 2022-12-21 06:18 编辑:admin 78阅读

1. 数据分析与数据挖掘案例

数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...

2. 数据挖掘案例分析报告

数据挖掘是从海量信息中进行搜索提取有价值信息的过程,是一个由处理数据、得到信息、挖掘知识等环节组成的工作过程,在这个过程中可能用到机器学习等各种算法,最终的目的是进行智能决策,而这个智能也可以理解为人工智能。比如说通过挖掘历史的销售数据找到商品之间的关联规则,大家熟知的啤酒尿布的故事就是一个典型案例。

模式识别

要想知道什么叫做模式识别,那就要先了解什么叫做模式,通常意义上,模式指用来说明事物结构的一种表达。它是从生产生活经验中经过抽象提炼出来的知识,说直白点就是可以用来表示事物的一些列特征的集合。

模式识别从十九世纪五十年代兴起,在二十世纪七八十年代风靡一时,是信息科学和人工智能的重要组成部分,主要被应用于图像分析与处理、语音识别、计算机辅助诊断、数据挖掘等方面。但是其效果似乎总是差强人意,因为模式识别中的事物特征是由人类设计总结的、主要基于人类在某一方面的领域知识,也就是说模式识别的效果不可能超过人类、有很大的局限性。

3. 数据分析与挖掘实战案例精粹

概念

项目数据分析是通过对项目数据全方位的科学分析来评估项目的可行性,为投资方决策项目提供科学、严谨的依据,降低项目投资的风险。

产生背景

为履行我国加入世贸的承诺,适应世界经济一体化的进程,结束我国专业技术考核行业中缺少"项目数据分析师"的现状,国家财政部、国家发展和改革委员会出台《关于规范长期投资项目数据分析方法及国际接轨的总体精神》,2003年底国家信息产业部电子行业职业技能鉴定指导中心正式设立"项目数据分析师"考试认证项目并制定出我国项目数据分析师培训、考试及管理办法。项目数据分析行业在中国正式形成。

发展现状

项目数据分析行业目前已经培养专业行业技术人才超过万人,项目数据分析师事务所覆盖全国各大主要城市,在社会经济中发挥的作用越来越大。

发展前景

世界经济一体化进程的加速和全球投资市场的蓬勃发展,带来的是对投资从业人员,尤其是精通投资管理和资本市场运作的专业分析人才的大量需求。中国投资分析行业正处于发展的起步阶段,投资人、企业管理层都迫切需要一个统一的、规范的标准来衡量我国投资分析人员的知识水平、道德规范和专业化程度,也更需要一些专业的第三方服务机构以数据为依据,对项目进行科学客观的分析。项目数据分析师和项目数据分析师事务所将担任这一重要的社会责任。

人才走向

(1)专职岗位

获得“项目数据分析师”证书是进入数据分析领域内工作的敲门砖,数据分析行业专职岗位如下:(高级、资深、证券、运营等)项目数据分析师、数据分析师、数据分析员、数据分析主管、数据分析工程师、数据挖掘人员等。

(2)其他相关岗位

获得“项目数据分析师”证书的学员可在本职工作中充分发挥作用,提升工作绩效、增强决策的科学性、提高工作决策的成功率。通过参加“项目数据分析师”学习来达到提升工作绩效的目的一般所包括的职位有:公司法人、项目总监、市场总监、财务总监、审计工作人员、会计工作人员、税务工作人员、投资公司从业人员、银行从业人员、评估公司从业人员、企事业单位的投资部门人员、决策部人员、市场部工作人员、营销策划人员等相关。

(3) 成立项目数据分析师事务所

随着我国经济体制变革的不断深入发展,银行和企业对项目的风险承担完全责任,完全按照市场经济的模式来实施项目分析评估。因此,项目数据分析师专业人员组成的项目数据分析事务所应运而生,填补了我国项目分析评估市场的空白。

项目数据分析

4. 数据分析与数据挖掘

因为OLAP是一种分析技术,具有汇总、合并和聚集以及从不同的角度观察信息的能力。

快速增长的海量数据收集、存放在大量的大型数据库中,没有强有力的工具,理解他们已经远远超出了人的能力,导致 数据丰富但信息贫乏。数据和信息之间的鸿沟越来越宽,这就要求必须系统的开发数据挖掘工具,将数据转换成有用的信息。

5. 数据分析与数据挖掘案例范文

大数据挖掘报告难点在于数据,只要有了数据,报告无非是将这些数据维度进行整合。

如果你顺利拿到了数据,大数据本身的数据集又不是很大,那么想生成数据报告有一个简单的办法,那就是使用现在的一站式BI工具,只要给出一些维度与条件,会自动分析出相应的结果并生成报告

6. 数据分析与挖掘应用案例

假设你的花园里的水管有泄漏,你带个水桶和一些密封材料来解决问题,但是过了一会儿,你发现泄漏会更大,这个时候需要专家携带更大的工具来解决问题,同时你仍在使用水桶排水。一段时间后,你会注意到一条巨大的地下溪流已经打开,你需要每秒处理数百万升的水。

你不仅需要新的水桶,而且还因为水的体积和速度增加了,需要采用了全新的解决问题的方法。为了防止城镇洪水,也许你还需要政府建造一座大型水坝,这需要大量的土木工程专业知识和完善的控制系统。

“数据”也发生了同样的情况。数据集已经变得如此庞大或复杂,以至于传统的数据处理软件不足以处理捕获,存储,分析,数据管理,搜索,共享,传输,可视化,查询,更新和信息隐私。所需的是“大数据”。

大数据是一个术语,它描述了日常会淹没企业的大量数据(结构化和非结构化)。但是,重要的不是数据量,而是组织处理重要数据的方法,可以对大数据进行分析,以助于做出更好决策和战略业务转移的见解。

大数据3V模型

大数据是高容量、高速度、种类繁多的资产,它们需要新的处理形式以实现增强的决策制定,洞察力发现和流程优化。

容量(Volume)

生成和存储的数据量。智能手机使用数据的激增;日常物体中的摄像头、汽车等等传感器将会产生数十亿个不断更新的数据源,其中包含环境、位置、视频、语音、符号等。在过去,存储它一直是个问题,但是新技术(例如Hadoop)减轻了负担。

速度(Velocity)

生成和处理数据的速度以满足企业需求。数据流以前所未有的速度流入,必须及时处理。点击和广告展示以每秒数百万个事件的速度捕获用户的行为;在线游戏系统支持数百万乃至千万用户一起使用,每个用户每秒产生多个数据。

种类(Variety)

数据的类型和性质。数据具有各种类型的格式,从传统数据库中的结构化数字数据到非结构化文本文档,邮件,视频,音频,符号和交易数据等。大数据不仅仅是数字,日期和字符串。大数据也是地理空间数据,3D数据。

近来数据价值(Value)被认为是大数据的第四大特征,从海量数据中获取有价值的信息需要多种数据挖掘技术、分析工具和模型方法的支持,这也正好印证了大数据的前三大特征。

从某种意义上讲,发觉数据的内在价值是实现数据智慧化的重要途径。大数据除了量大、处理速度快、结构种类多之外,实现数据价值才是大数据的主要内涵,数据价值化赋予数据生命力,使得大数据有“肉体”,也有“灵魂”。

当你将大数据与强大的分析思维结合在一起时,大数据就能帮助公司改善运营并做出更快、更明智的决策。捕获,格式化,操纵,存储和分析这些数据后,可以帮助公司获得有用的见解和决策,以增加收入,吸引、留住客户并改善运营方式。

你可以从任何来源获取数据并进行分析,开发新产品,优化产品以及做出明智的决策。

大数据在行业中的应用

大数据正以惊人的速度,数量和种类从多个来源获得。为了从大数据中提取有意义的价值,您需要最佳的处理能力,分析能力和技能。大数据几乎影响了每个行业的组织。

银行业务:了解客户并提高客户满意度很重要,同时保持法规遵从性的同时最小化风险和欺诈也同样重要。

教育:通过分析大数据,教育者可以识别学生的学习程度,因材施教,确保学生取得适当的进步,并可以制定更好的教育评估系统。

政府:当政府机构能够利用分析并将其应用于大数据时,它们在管理公用事业,运营机构,处理交通拥堵或预防犯罪等方面将占有重要地位。

卫生保健:患者记录、治疗计划、处方信息的收集,在医疗保健方面,需要快速、准确地完成所有工作,并且在某些情况下,还必须具有足够的透明度来满足严格的行业法规。

制造:制造商可以提高质量和产量,同时减少库存。制造商可以更快地解决问题并做出更灵活的业务决策。

零售:零售商需要了解客户的喜好,向不同的用户使用不同的营销方法;找到处理交易的最有效方法,将失效的业务重新带回并能分析出最具战略意义的方法。

大数据仍然是所有这些事情的核心。