数据库营销例子(数据营销案例100例)

虚拟屋 2022-12-21 12:56 编辑:admin 60阅读

1. 数据营销案例100例

营销数据分析大多时候下就是销售数据分析,可以这样处理:整理好销售中需要关注的数据维度,将其做成可视化仪表盘,定期更新数据就行,销售数据主要包括这些维度:

1、销售外勤管理

作为一个小领导,每天都要看下属的客户拜访情况,团队的成员会在协同软件上详细记录自己的拜访的情况,包括客户名称、行业和具体情况,由我来做汇总工作。

团队拜访情况:观察折线图,发现有明显下降的趋势,询问负责人,及时做出调整。

客户拜访情况:通过下属记录的明细数据了解每个客户拜访次数,拜访三次左右的客户会督促他们重点跟进一下;拜访了五次以上却没有签单的客户,了解原因,考虑是否放弃。

客户行业分类:拜访和签单客户中,哪个行业居多也是莓菌关注的指标,根据实际情况及时调整销售策略,重点攻占成交率高的行业客户。

2、销售业绩管理

作为公司的销售,给公司带来实际的收益是老板最愿意看到的,而如何管理好每个销售,是至关重要的。对于销售业绩的管理,同样也是通过数据直观的了解并及时调整方向,这样老板能直观了解数据情况。

销售排名:优秀的销售都喜欢拼第一,所以销售龙虎榜尤为重要,每天莓菌会通过实际业绩排名对前三名员工给予相应的奖励,老板也会通过排行榜了解各部门业绩情况。

客户排行榜:客户方面也会做成交额汇总,因为大客户是需要定期维护的。对于有些大客户,成交额下降可以提醒我们及时做好补救。

库存管理:对于销售而言,了解公司库存会节约很大的成本,因为一旦缺货就会影响正常的交付时间。通过图表来了解产品销售情况,哪些产品卖的好一目了然。

这些数据都是销售比较关注的数据,可以在BDP个人版上做好可视化图表,然后直接通过“分享”直接将数据结果分享给Boss。而且每周在BDP上追加数据(要是是直连数据库或第三方平台数据,那数据都不需要追加,数据是自动更新的),省事很多很多,数据结果图表也就更新了,分析效率提高了很多!

2. 大数据营销的典型案例

假设你的花园里的水管有泄漏,你带个水桶和一些密封材料来解决问题,但是过了一会儿,你发现泄漏会更大,这个时候需要专家携带更大的工具来解决问题,同时你仍在使用水桶排水。一段时间后,你会注意到一条巨大的地下溪流已经打开,你需要每秒处理数百万升的水。

你不仅需要新的水桶,而且还因为水的体积和速度增加了,需要采用了全新的解决问题的方法。为了防止城镇洪水,也许你还需要政府建造一座大型水坝,这需要大量的土木工程专业知识和完善的控制系统。

“数据”也发生了同样的情况。数据集已经变得如此庞大或复杂,以至于传统的数据处理软件不足以处理捕获,存储,分析,数据管理,搜索,共享,传输,可视化,查询,更新和信息隐私。所需的是“大数据”。

大数据是一个术语,它描述了日常会淹没企业的大量数据(结构化和非结构化)。但是,重要的不是数据量,而是组织处理重要数据的方法,可以对大数据进行分析,以助于做出更好决策和战略业务转移的见解。

大数据3V模型

大数据是高容量、高速度、种类繁多的资产,它们需要新的处理形式以实现增强的决策制定,洞察力发现和流程优化。

容量(Volume)

生成和存储的数据量。智能手机使用数据的激增;日常物体中的摄像头、汽车等等传感器将会产生数十亿个不断更新的数据源,其中包含环境、位置、视频、语音、符号等。在过去,存储它一直是个问题,但是新技术(例如Hadoop)减轻了负担。

速度(Velocity)

生成和处理数据的速度以满足企业需求。数据流以前所未有的速度流入,必须及时处理。点击和广告展示以每秒数百万个事件的速度捕获用户的行为;在线游戏系统支持数百万乃至千万用户一起使用,每个用户每秒产生多个数据。

种类(Variety)

数据的类型和性质。数据具有各种类型的格式,从传统数据库中的结构化数字数据到非结构化文本文档,邮件,视频,音频,符号和交易数据等。大数据不仅仅是数字,日期和字符串。大数据也是地理空间数据,3D数据。

近来数据价值(Value)被认为是大数据的第四大特征,从海量数据中获取有价值的信息需要多种数据挖掘技术、分析工具和模型方法的支持,这也正好印证了大数据的前三大特征。

从某种意义上讲,发觉数据的内在价值是实现数据智慧化的重要途径。大数据除了量大、处理速度快、结构种类多之外,实现数据价值才是大数据的主要内涵,数据价值化赋予数据生命力,使得大数据有“肉体”,也有“灵魂”。

当你将大数据与强大的分析思维结合在一起时,大数据就能帮助公司改善运营并做出更快、更明智的决策。捕获,格式化,操纵,存储和分析这些数据后,可以帮助公司获得有用的见解和决策,以增加收入,吸引、留住客户并改善运营方式。

你可以从任何来源获取数据并进行分析,开发新产品,优化产品以及做出明智的决策。

大数据在行业中的应用

大数据正以惊人的速度,数量和种类从多个来源获得。为了从大数据中提取有意义的价值,您需要最佳的处理能力,分析能力和技能。大数据几乎影响了每个行业的组织。

银行业务:了解客户并提高客户满意度很重要,同时保持法规遵从性的同时最小化风险和欺诈也同样重要。

教育:通过分析大数据,教育者可以识别学生的学习程度,因材施教,确保学生取得适当的进步,并可以制定更好的教育评估系统。

政府:当政府机构能够利用分析并将其应用于大数据时,它们在管理公用事业,运营机构,处理交通拥堵或预防犯罪等方面将占有重要地位。

卫生保健:患者记录、治疗计划、处方信息的收集,在医疗保健方面,需要快速、准确地完成所有工作,并且在某些情况下,还必须具有足够的透明度来满足严格的行业法规。

制造:制造商可以提高质量和产量,同时减少库存。制造商可以更快地解决问题并做出更灵活的业务决策。

零售:零售商需要了解客户的喜好,向不同的用户使用不同的营销方法;找到处理交易的最有效方法,将失效的业务重新带回并能分析出最具战略意义的方法。

大数据仍然是所有这些事情的核心。

3. 1000个营销案例

一、什么是整合营销?

整合营销,指的是将各种不同的传播工具和推广手段进行有效的结合,并根据市场环境的变化进行同步修正操作,最终实现在品牌方与客户方交互的过程中,完成企业增值的理念与方法。

二、整合营销经典案例分析

整合营销案例一:“过吉祥年,喝王老吉”,整合营销初识味

2011年春节期间,王老吉投放一则“过吉祥年,喝王老吉”的主题广告。通过节日营销手法,运用电视、网络等多个渠道,给大众来了一场整合营销。

在大众眼里,红罐王老吉本身就自带吉庆属性,配合春节吉祥如意的气氛,王老吉更是讲这方面的属性放大到极致。活动期间,通过将回家、团聚、购年货、送礼四个场景进行联合,将进一步激发群众的情感共鸣。

春节期间,电视等固定设备,受到的关注较小,当时紧靠电视广告投放,内容传播效果和作用体现效果都会大大折扣,为此,利用移动端的便捷属性,联合移动媒体,让最终的营销效果反响剧烈。

4. 大数据营销应用案例

大数据营销是指基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。大数据营销衍生于互联网行业,又作用于互联网行业。依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使广告更加精准有效,给品牌企业带来更高的投资回报率。 大数据营销的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人。 大数据营销,本质上是由系统信息的抓取,分离能力决定的。大数据精准营销系统是在融合业界优质数据资源基础上,打造大数据营销服务平台,为客户提供全流程数据营销服务管理,使客户的营销传播实现从用户洞察、策略创意、执行管控到效果评估的全效监控和管理,为客户营销传播的每一分钱建立流向指导:源头可追溯、效果可优化、去向可管理,在瞬息万变的信息时代,全面提升客户数字营销效果。

5. 数据营销案例100例分析

八种常见的数据分析方法

1数字和趋势

采用数字和趋势图进行数据信息的展示最为直观,从具体的数字和趋势走向中可以更好地得到数据信息,有助于提高决策的准确性和实时性。

2维度分解

当单一的数字或趋势过于宏观时,我们可以通过不同维度对数据进行分解,以获取更加精细的数据洞察。在进行维度选择时,需要考虑此维度对于分析结果的影响。

3用户分群

用户分群即指针对符合某种特定行为或具有共同背景信息的用户,进行归类处理。也可通过提炼某一类用户的特定信息,为该群体创建用户画像。用户分群的意义在于我们可以针对具有特定行为或特定背景的用户,进行针对性的用户运营和产品优化,比如对具有“放弃支付或支付失败”的用户进行对应优惠券的发放,以此来实现精准营销,大幅提高用户的支付意愿和成交量。

4转化漏斗绝大部分商业变现的流程,都可归纳为漏斗。漏斗分析是常见的一种数据分析手段,比如常见的用户注册转化漏斗,电商下单漏斗。整个漏斗分析的过程就是用户从前到后转化的路径,通过漏斗分析可以得到转化效率。这其中包含三个要点:其一,整体的转化效率。其二,每一步(转化节点)的转化效率。其三,在哪一步流失最多,原因是什么,这些流失的用户具有什么特征。

5行为轨迹 

数据指标本身只是真实情况的一种抽象,通过关注用户的行为轨迹,才能更真实地了解用户的行为。例如只看到常见的uv和pv指标,是无法理解用户是如何使用你的产品的。通过大数据手段来还原用户的行为轨迹,可以更好地关注用户的实际体验,从而发现具体问题。如果维度分解依旧难以确定某个问题所在,可通过分析用户行为轨迹,发现一些产品及运营中的问题。

6留存分析人口红利逐渐消退,拉新变得并不容易,此时留住一个老用户的成本往往要远低于获取一个新用户的成本,因此用户留存成为了每个公司都需要关注的问题。可以通过分析数据来了解留存的情况,也可以通过分析用户行为找到提升留存的方法。常见的留存分析场景还包括不同渠道的用户的留存、新老用户的留存以及一些新的运营活动及产品功能的上线对于用户回访的影响等。

7A/B测试 A/B测试通常用于测试产品新功能的上线、运营活动的上线、广告效果及算法等。

进行A/B测试需要两个必备因素:第一,足够的测试时间;第二,较高的数据量和数据密度。当产品的流量不够大时,进行A/B测试很难得到统计结果。

8数学建模涉及到用户画像、用户行为的研究时,通常会选择使用数学建模、数据挖掘等方法。比如通过用户的行为数据、相关信息、用户画像等来建立所需模型解决对应问题。

6. 大数据营销经典案例

1、针对性营销  大数据可以提供某些企业交易特点和资金需求特点,可以帮助业务部门对企业的资金需求进行分析和筛选,提供现金管理产品,帮助企业解决流动性问题。大数据可以帮助信用卡中心追踪热点信息,针对特定人群提供精准营销产品,增加新卡用户,例如热映电影、娱乐活动、餐饮团购等。银行针对特定人群推出定制的理财产品,保险产品。  

2、社交化营销  人们的社交行为产生了巨大的数据,利用社交平台,结合大数据分析,金融行业可以开展成本较低的社交化营销,借助于开放的互联网平台,依据大量的客户需求数据,进行产品和渠道推广。通过互联网社交平台返回的海量数据,评测营销方案的阶段成果,实时调整营销能够方案,利用口碑传销和病毒式传播来帮助金融行业快速进行产品宣传、品牌宣传、渠道宣传等。

3、数据平台 如何做到精准营销,从而增加客户粘性,这无疑是要有一个强大的数据平台做后盾,依靠大数据平台,类似多云数据,这样的数据平台为支点,进行客户需求的引导性作用,不断加强互联网+的实际应用,达到从大数据中快速获取客户的购买欲望及购买需求。  

4、信用风险评估  银行可以利用大数据增加信用风险输入纬度,提高信用风险管理水平,动态管理企业和个人客户的形用风险。建立基于大数据的信用风险评估模型和方法,将会提高银行对中小企业和个人的资金支持。个人信用评分标准的建立,将会帮助银行在即将到来的信用消费时代取得领先。基于大数据的动态的信用风险管理机制,将会帮助银行提前预测高风险信用违约时间,及时介入,降低违约概率,同时预防信用欺诈。  

5、欺诈风险管理  信用卡公司可以利用大数据及时预测和发现恶意欺诈事件,即使采取措施,降低信用开欺诈风险。银行可以基于大数据建立防欺诈监控系统,动态管理网上银行、POS机、ATM等渠道的欺诈事件,大数据提供了多纬度的监控指标和联动方式,可以弥补和完善目前反欺诈监控方式的不足。特别在识别客户行为趋势方面,大数据具有较大的优势。  

6、提升客户体验  银行可以依据大数据分析,可以对进入网点的客户提供定制服务和问候,在节假日为客户提供定制服务,预知企业客户未来资金需求,提前进行预约,提高客户体验。私人银行可以依据大数据分析报告,帮助客户进行金融市场产品投资,赚取超额利润,形成竞争优势,提高客户体验。保险业务可以依据大数据预测为客户提前提供有效服务,提高客户体验,同时增加商业机会。理财业务可以利用大数分析,快速推出行业报告和市场趋势报告,帮助投资者及时了解热点,提高客户满意度。  

7、需求分析和产品创新  大数据提供了整体数据,银行可以利用整体样本数据,从中进行筛选。可以从客户职业,年龄,收入,居住地,习惯爱好,资产,信用等各个方面对客户进行分类,依据其他的数据输入纬度来确定客户的需求来定制产品。银行还可以依据企业的交易数据来预测行业发展特点,为企业客户提供金融产品服务。  

8、运营效率提升  大数据可以展现不同产品线的实际收入和成本,帮助银行进行产品管理。同时大数据为管理层提供全方面报表,揭示内部运营管理效率,有力于内部效率提升。大数据可以帮助市场部门有效监测营销方案和市场推广情况,提高营销精度,降低营销费用。大数据可以展现风险视图控制信用风险,同时加快信用审批。大数据可以帮助保险行业快速为客户提供保险方案,提高效率,降低成本。理财产品也可以利用大数据动态提供行业报告,快速帮助投资人。  9 、决策支持  大数据可以帮助金融企业,为即将实施的决策提供数据支撑,同时也可以依据大数据分析归纳出规律,进一步演绎出新的决策。基于大数据和人工智能技术的决策树模型将会有效帮助金融行业分析信用风险,为业务决策提供有力支持。金融行业新产品或新服务推向市场前,可以在局部地区进行试验,大数据技术可以对采集的数据精准营销进行分析,通过统计分析报告为新产品的市场推广提供决策支持。