1. 店铺数据分析应该从什么方面入手
从订单数降序来看:那些出单量多的通常是价值偏低,且转化率较高的产品,此类产品可以当做店铺的引流产品 维护好7天出单量 从销售额降序来看:会找出那些曝光不高但带来很高销售额的那些产品,这些可当做利润款,平时关注单个产品的销售额涨幅,下滑严重的及时优化 关注好这块的销售额 从购物车降序来看:加入购物车数量可间接性代表产品在平台上认可度和竞争力度,唤醒这部买家可以以限时限量和定向型优惠劵的方式
2. 店铺数据分析总结
可以提升业务能力 为什么说数据分析可以提升业务能力呢?因此懂业务才能更好的进行数据分析,所谓懂业务就是需要了解产品的一系列发展模式。
更好的进行用户分析 数据就是数值,而数值又由数字组成,是我们进行观察计算出的结果。
有利于增长 通过数据分析可以了解到用户的需求从而精准的进行用户定位,继而进行产品的设计理论。
总结 通过以上内容了解了数据分析的重要性以及做好数据分析的好处,而做好数据分析。
3. 如何对店铺数据进行分析
商品数据分析三个常用指标有:
1、客流量、客单价分析:主要指本月平均每天人流量、客单价情况,与去年同期对比情况。这组数据在分析门店客流量、客单价时特别要注重门店开始促销活动期间及促销活动前的对比分析,促销活动的开展是否对于提高门店客流量、客单价起到了一定的作用。
2、售罄率:指货品上市后特定时间段销售数量占进货数量的百分比。它是衡量货品销售状况的重要指标。在通常情况下,售罄率越高表示该类别货品销售情况越好,但它跟进货数量有着很大的关系。通过此数据可以针对货品销售的好坏进行及时的调整。
3、库销比:指库存金额同销售牌价额之比例。简单的来说就是某一时间点的库存能够维持多长时间的销售。它是衡量库存是否合理的重要指标,合理的标准在3-5 左右。在销售数据正常的情况下,存销比过高或过低都是库存情况不正常的体现。通过该组数据的分析可以看出门店库存是否出现异常,特别是否存在库存积压现象。扩展资料商品间接数据的组合分析方法1、销售综合分析销售综合分析的分析指标是销售额、毛利额、毛利率、库销比、售罄率;分析条件是时间段(任意时间段、自然时间段)、经营方式;分析层次是总部,门店,大类,款式,价位带,单品。2、关联分析(同比/环比分析)将上一级分析的报表条件传递给同比分析,用同比分析的结构来检验我们对毛利调整策略的结果,看一下数据变化趋势,以便进行下一阶段的商品调整。3、顾客数与客单价有效提升销售额的两个途径是:提高实现消费的顾客人数、提高每位顾客购买的金额数。有效顾客(即实现消费的顾客)数高,说明你的商品、价格和服务能吸引、满足消费者的需求,客单价高,说明你的商品宽度能满足消费者的一站式购物心理、商品陈列的相关性和连贯性能不断地激发消费者的购买欲望。
4. 怎样进行店铺数据分析
淘宝店铺数据分析:
作为淘宝卖家,如果不懂的淘宝数据的分析,那么就不能好好的认识自我,网店的经营也会受到阻碍。所以数据的分析比较重要,要会运用数据分析工具,从而看出问题,做出调整。
1、借助生意参谋进行数据的分析,如:店铺经营各项核心数据,包括店铺实时数据、商品排行、行业排名、店铺经营概况、流量分析、商品分析、交易分析、服务分析、营销分析和市场行情。
2、流量分析展现全店流量概况、来源及去向、访客及装修分析;从店铺整体到不同粒度细分店铺交易情况,方便商家及时掌控店铺交易情况,同时提供资金回流行动点。
3、通过流量表格进行分析
a.通过流量查看和流量对比,找出属于自己流量的高峰期,找出量子统计的流量高峰规律。
b.每天在自己店铺的高峰期去发布要推的宝贝,这样经过七天一个周期后,这些宝贝离下架时间很近就可以使得排名会比较靠前。
c. 在高峰期时注意一定要安排客服在线,及时响应讯单用户,避免流量白白流失而未达成成交。
4、通过开车数据分析优化关键词及类目
宝贝详细报表,选出宝贝下面展现量为零或者展现量很少的关键词。针对这些词,做近段时间的数据分析,不好的词就要删除。
·······
5. 店铺数据分析怎么做
运行数据以财务数据是主要的。财务数据包括营业额,利润,税收,成本组成。网络运营数据:pv. uv. 网站排名.seo等一管之见。情报通于2008年上线,是最早的电商数据分析之一,累计为超过3万多家店铺和品牌商提供电商大数据服务,是品牌商,经销商,研究机构的电商运营必备工具之一。可免费试用及远程演示。
6. 应该从哪些方面分析店铺数据
定期进行科学的数据分析,是门店负责人掌握门店经营方向的重要手段。
门店经营指标数据分析
销售指标分析:主要分析本月销售情况、指标完成情况、与去年同期对比情况。通过这组数据的分析可以知道同比销售趋势、实际销售与计划的差距。
销售毛利分析:主要分析本月毛利率、毛利额情况,与去年同期对比情况。通过这组数据分析可以知道同比毛利状况,以及是否在商品毛利方面存在不足。
营运可控费用分析:主要是本月各项费用明细分析、与去年同期对比情况,有无节约控制成本费用。这里的各项费用是指:员工成本、能耗、物料及办公用品费用、维修费用、存货损耗、日常营运费用(包括电话费、交通费、垃圾费等),通过这组数据的分析可以知道门店营运可控费用的列支,是否有同比异常的费用发生,有无可以节约的费用空间。
坪效:主要是本月坪效情况、与去年同期对比。日均坪效,是指日均单位面积销售额,即:日均销售金额÷门店营业面积。
7. 实体店铺数据分析的内容包括哪些方面
我们通常把财务分析分为两类:
第一类:狭义的财务分析 - 以财务报表为基础。
第二类:广义的财务分析 - 结合企业实际经营情况。
第一类,简单介绍一下分析的内容:财务管理建设模型。
第二类:框架、思维与要点:集团型企业的 BI 经营分析如何做?
财务管理建设模型
建立财务驾驶舱,指标:资产、负债、利润、现金流、存货等,以下 by 派可数据财务分析案例( 数据均已脱敏 )。
利润分析。分析企业利润总额、累计利润总额、净利润、累计净利润、营业利润率、净利润率及同环比情况。
营业利润趋势分析、年利润对比分析、月利润对比分析情况。
收入分析。营业总收入、累计营业总收入、主营业务收入、累计主营业务收入、其他业务收入、累计其他业务收入及同环比情况。
年收入分析趋势,联动月收入情况趋势分析。
主要收入类型占比情况 —— 主营业务收入、营业外收入、其他业务收入及趋势分析情况。
成本费用分析。营业成本、主营业务成本、期间费用、财务费用、管理费用、销售费用及同环比情况。
不同年份费用率对比情况 —— 期间费用率、成本费用利润率、财务费用率、管理费用率、销售费用率年及月度趋势情况。
年期间费用对比分析,联动到期间费用占比分析。
年成本对比分析,联动到月成本对比分析。
资产负债分析,资产合计、负债合计、所有者权益合计等。
资产负债率月度趋势分析。
资产负债总体情况分析,通过下钻可以看到不同月份不同资产、负债和所有者权益情况。
各项目分析钻取分析,例如通过下钻流动资产可以看到货币资金、应收账款、其他应收款、交易性金融资产、应收股利等情况。
应收账款、应付账款月度趋势分析,及同环比情况。
资产负债总体分析,可以通过下钻钻取到不同的项目。
资产总体情况、资产变化趋势等。
资产项目分析,流动资产、非流动资产分析。
不同的资产项目占比分析,例如流动资产中应收账款、应收票据、预付款项、存货、交易性金融资产等分析。
负债与所有者权益情况分析。
财务能力指标分析 – 净资产收益率、存货周转率、流动比率、总资产报酬率、应收账款周转率、速动比率分析等。
盈利能力指标分析 —— 净资产收益率、营业利润率、营业毛利率、成本费用利润率、净利润率、总资产净利率、营业净利率、主营业务毛利率、主营业务利润率、总资产报酬率、资本收益率、股本报酬率分析等。
营运能力指标分析 —— 固定资产周转率、应收账款周转率、股东权益周转率、存货周转率、总资产利润率、流动资产周转率、应收账款周转天数、存货周转天数等趋势分析。
偿债能力分析 —— 流动比率、速动比率、现金比率、资产负债率、营运比率、长期负债比率等。
发展能力分析 —— 总资产增长率、固定资产增长率、资本保值增值率分析等。
其他能力分析 —— 销售费用率、管理费用率、财务费用率、期间费用率、固定资产比率、应付账款周转率、主营业务成本率、销售利润率等趋势分析。
税负分析 —— 税金合计、应交增值税、应交所得税、应交城市维护建设税、应交教育附加、印花税等同环比分析、年度、月度趋势及占比情况。
框架、思维与要点:集团型企业的 BI 经营分析如何做?
在目前国内大部分的商业智能 BI 项目中,项目的发起与启动都是从单一的业务领域或者部门发起的,比如财务、销售、运营等部门,基本上都是由小往大、由点及面,很少一上来直接就从集团层面从顶层全面铺开整体规划。一方面有资金、人力投入成本因素的考虑,另外一方面在于项目的磨合、经验的积累。就如同打仗一样,先从小规模的作战、局部战争开始积累与培养人才与技术经验,再到最后大手笔来组织兵团级别的战役。
但也有越来越多的自身 IT 基础信息化能力沉淀比较好的集团性企业,为了更加长远的规划与考虑,需要从一开始就要有一个相对明确的建设方向和思路,因此整体性和框架性思维就很重要。
派可数据集团经营分析案例
基于我们多年在集团型企业项目建设上的经验,给大家简单总结一下。
说明:本文案例所演示的数据均已做脱敏处理,包括部分维度数据。为了突出一些比较,有些数据在实际业务中可能并不合理,请读者忽略,重点在于理解一些分析思路与框架。
一. 集团型企业成长轨迹与挑战
在讲集团化企业 BI 经营分析建设之前,先了解一下集团型企业的成长轨迹。集团型企业在早期都是通过单一业务开始的,逐步随着我国改革开放的进程以及经济宏观政策的调整,出现了很多新的经济热点。
这些企业在参与社会经济建设的过程中也成功的抓住了这些经济热点并得以壮大发展,通过兼并重组、新设、合资等逐步进入了新的事业领域,最后对外就呈现出来了一种多组织、多业务、多业态的企业集团。
当然,集团化的企业在发展过程中也会面临各种各样的挑战,例如战略协同、集团化管控、财务与风险管控、人才管理与激励等等,这就要求集团化企业需要通过 IT 技术信息化的手段来梳理企业的各类业务协同与管理流程,提升透明度和加快工作效率。
同时,集团化企业在面对这些挑战的时候就不得不对其增长模式、盈利模式、耦合模式做出更加深入的思考,而这些模式的背后一切都离不开数据的支撑,对数据分析结果的论证、判断与决策。
二. 集团型企业经营分析框架
对于集团型企业的经营分析还是一个比较复杂的、系统性的工程,对参与到经营分析的团队和个人需要具备整体性的框架分析思维,也需要具备局部细节的探究能力,更需要具备例如财务、业务、组织管理、行业知识等相关学习和总结能力,同时还要求对数据有比较高的敏感性和很强的数据逻辑能力、洞察力。
对于不同规模、不同行业、不同形态、不同管理方式的集团型企业分析的深度和广度无法完全囊括,但对于很多分析思路而言还是有很多共通性的。比如财务报表分析,基本对每一家企业而言都是相对标准和统一的,可以从比较宏观的角度了解一家企业的财务与经营业绩。
但单纯的财务报表分析是无法全面衡量企业具体职能领域和具体业务活动的业绩表现,所以更多的时候是需要结合财务与实际的业务一起形成联动,对企业的经营做全盘的了解。
专业的财务分析不在本篇文章展开,对于专业的财务分析可以看一些上市公司的年报,这里只从集团型企业经营分析的视角结合一定的财务视角来展开。
集团收入、利润、资金与预算情况
从集团层面首先重点应关注的就是集团收入、利润、资金以及预算执行情况。从营业收入了解到集团目前的收入规模,离预算指标差额、完成率情况;从利润了解到集团目前的利润、预算指标及完成率执行情况;包括目前的资金(主要是流动资金)情况和营业收入、利润近今年的同比情况。
集团经营分析总体指标
如果单纯的从集团层面看以上这些指标分析不出来什么问题,所以就要从构成集团的重要结构,即业务板块来分析。
集团板块收入与预算执行情况
从上面的三张图中基本上对集团的重点业务一目了然,可以清晰的看出在这家集团型企业中房地产的收入以 130亿的收入规模贡献达到了 80%,其次新能源的达到了 17%,家具制造业 1.4%,其它的基本上就可以忽略不计,都在1%以下。所以对于这家集团,房地产板块的业务就是它的主营业务,新能源次之。
实际上,每一家集团对自己的重点的主营业务太熟悉太了解了,基本上不用分析就能知道,在这里重点实际上要关注的有几个方面的点:
第一,集团有无需要战略转型的业务要开拓与发展,当前这个业务发展的如何。尽管这个新开展的业务可能暂时收入规模还不大,但总体趋势可能是比较不错的,所以重点分析的实际上反而是新领域、新业务的拓展情况。
第二,在战略转型的过程中,目标是既要保持集团总体收入规模的增长,同时也要下降主营业务的比重。这一点意思就很明确,主营业务也要增长,其它重点新开拓的业务也要增长,但是其它重点业务增长的速度要远远高于主营业务。
集团板块利润与预算执行情况
单纯的看集团的利润分析感觉不到太大的问题,但是结合收入来看,对比就会很强烈。房地产行业的收入贡献在集团达到了 80%,但是利润贡献却只有 30%左右,0.32 亿元。反而,新能源的收入贡献只有 17%,但对集团的利润贡献却达到了41%,0.43亿元。同时,有一个在收入规模上完全被忽略掉的家具制造业以 2.36亿,1.4%的收入占比贡献了 28% 的利润贡献。
因为数据做了一些处理,我们暂且忽略行业和数据真实性,来思考以下几个问题:
1. 在一家集团型企业中是否存在收入规模大,但是盈利不足的业务板块比如 A 板块。但同时也存在着收入贡献占比不多,但是盈利能力却很强的业务板块,例如 B 板块 ?
2. A 板块是朝阳产业、还是夕阳产业,在未来的 5-10 年中是否能够维持这种规模收入增长,在以往的几年时间收入增长率怎么样 ?
3. B 板块是朝阳产业、还是夕阳产业,在未来的 5-10 年中是否有足够的市场增长空间和天花板,目前的增长速度能够保持多长时间 ?
这种思考都是战略层面的深度思考,进攻的产业有哪些? 防守的产业有哪些?防守到什么时候就可以抛弃? 进攻到什么阶段会遇到阻力,这种阻力能够承受到什么时候?
最后又看了下资金情况,可以按照主产业与次要产业看看货币资金、应收票据、应收账款、存货的情况。有多少现金在手上,有多少是别人欠我的,主要是哪些板块欠的比较多,还有多少压在手上、仓库里没有卖出去。
以上的几个点基本上要重点体现出来的就是:收入决定发展规模,利润决定发展质量。还有,整个过程完成的好不好,有没有达到预算执行目标,每个数据的表现都是需要仔细考虑和反馈的。为什么完成的比较好,为什么没有完成,都需要认真思考。
毛利、毛利率的分析定位
在分析上面的收入和利润过程中,大家可能会感觉总少了一点什么,比如毛利、毛利率。确实如此,毛利、毛利率的分析非常重要,但之所以没有放到集团层面去考虑主要有这么几个重点因素:
第一,毛利比较高的业务板块不一定是企业集团的重点收入板块,单纯比较毛利是比较局限的。比如上面有些业态即使毛利再高,但是由于收入规模很小,最终利润贡献也会小到忽略不计,达不到集团重点的经营分析层面。
第二,集团层面的毛利分析一定是放在重点收入业务板块和重点、新关注的业务板块。重点收入业务板块在很大程度上决定了企业集团的收入规模大小,它的毛利对最终利润水平非常重要。重点、新关注的业务板块代表了集团未来的重点业务、新领域、新市场的开拓,在未来收入达到一定的增速、水平和规模的时候,毛利的高低直接影响最终利润的规模大小。
所以对于集团型企业而言,对于毛利水平的分析一定是围绕收入规模占比大的业务板块或是决定未来集团战略转型的新业务板块,或者是老业务板块中的新产品线。因此,关于毛利和毛利率的分析是需要从集团层面下沉到具体的业务板块、业务板块的重点企业、重点企业的重点产品线或新产品线这样的一种分析和比较。
简单总结,毛利、毛利率的分析结构:
1. 集团 -> 重点业务板块 -> 重点企业 -> 重点产品线。
2. 集团 -> 重点业务板块 -> 重点企业 -> 新产品线。
3. 集团 -> 新业务板块。
财务报表视角下的企业
在上面提到的经营分析中,实际上也会涉及到大量的财务分析指标,可以结合集团企业的实际情况从宏观的例如盈利能力、风险控制能力、成长能力三个层面、六个关键点来评价企业整体财务表现。
1. 盈利能力主要体现在获利性和资产使用效率两个方面:
获利性 —— 在同等业务量和营业收入水平下,降低成本以产生更多利润的能力,即如何最大化利润表的 最终行 Bottom Line (净利润)。
资产使用效率 —— 在同等资源占用和生产能力(资产规模)下,取得更高业务量、营业收入或现金流入的能力,即如何最大化利润表的第一行 Top Line (营业收入)或最大化经营利润的变现速度。
2. 财务风险控制能力主要体现在流动性、偿付性和财务结构三个方面:
流动性 —— 现金是否足够支撑日常运营的支出,以及流动负债是否可由足够的流动资产来偿还,即评价企业的短期偿债能力。
偿付性 —— 企业是否可以偿还长期负债,企业的长期偿债能力如何。
财务结构 —— 资本中不同股权与债权的比例,不同比例下财务杠杆作用以及对利润的影响。
3. 成长能力主要体现在经营增长方面:
经营增长 —— 企业在长期发展中业务量规模的扩张程度,资源投入的增加速度,以及所带来的收入和盈利的增长速度。
反映以上三个层次六大关注点的财务指标有很多,集团型企业也需要根据自身运营特点,围绕这个基本的财务分析框架来选择合适的财务指标进行科学评价。
行业影响、市场影响因素
任何数据的解读都离不开行业性,尤其是集团型的在收入规模达到一定水平下的企业,行业与市场因素对收入、毛利、利润的影响都会非常大,以下面几个行业为例:
光伏发电行业 - 资金密集性行业,主要以自有资金、银行借款、融资性租赁来筹措资金,整体负债较高。如未来宏观经济形势发生不利变化或信贷收缩,公司业务的持续发展可能会受到不利影响。同时,光伏电站项目投产到进入补贴名录时间较长,可再生能源基金收缴结算周期较长等因素,导致国家财政部发放可再生能源补贴存在一定的滞后,对标的公司现金流压力比较大。
医药行业 - 第一,容易受市场政策影响,例如:2019年国家卫健委发布的《关于印发第一批国家重点监控合理用药药品目录(化药及生物制品) 的通知》,对西医开具中药处方加强了管理,可能会导致中药品种在部分医院的处方和推广面临困难。第二,医保和基药目录产品进入医院需要通过药品招标采购流程,受医保支付压力影响,近年的招标采购中降价成为普遍的趋势。 第三,国家对通过一致性评价的产品实施带量采购,药品价格降幅明显。包括受环保等政策影响,近年来化学原料药价格大幅上涨,未来几年仍可能继续小幅上涨。
化工行业 - 化工行业主要上游行业为石化行业,市场波动受国际原油价格直接影响,下游行业多为民生行业,受宏观经济影响很大。包括主要原材料价格波动引发的成本增加无法直接向市场客户进行转移,利润空间缩小。同时,因安全生产监管、环保监管等各个方面的原因,企业的生产经营也会受到比较大的影响。
通过行业分析,了解所在行业整体发展收入规模、行业收入增速、整体毛利、利润情况对比集团各业务板块实际发展情况,以及在行业中处于一个什么样的市场位置基本上就可以大概判断出集团主要业务板块在市场的竞争力表现。行业收入增速快,但业务板块收入水平明显低于行业平均水平,是市场品牌宣传力度不够、市场没有打开还是产品竞争力不够,到底是哪些因素的影响 ? 行业细分领域毛利率整体水平高,但在该行业业态下的企业毛利率水平低下,又是哪些因素导致的 ?只有将数据置身于行业水平来对比了解,这样才更容易找到与行业内头部企业的差距,以及不断思考怎样做才能做得更好。
业态 - 企业 - 产品线,企业重点调整与决策影响的考虑
对于重点业态下的重点企业,重点业态下的重点产品线以及涉及到集团产业升级、战略调整目标下的新业态、新业务领域、新产品线均应该纳入到集团经营层面进行深入分析,重点仍然分析的是收入、成本、毛利、费用与利润。
重点业态追求效率。对重点业态的关注除了对收入规模的关注外,重点关注的是利润水平,因为重点业态的发展跟随行业发展水平可能增速已经达到一定的瓶颈,在发展增速能够保持在一定水平的前提下,通过对成本、费用的控制来提升利润率水平,本质上追求的是效率的提升。
新业态追求规模和占有率。对新业态的关注重点放在收入增长规模的变化,代表了集团型企业未来变革、升级转型的趋势和方向,寻找增长第二级,以市场占有率为目标,本质上这个阶段追求的是市场规模。
同时,也应该注意到集团型企业在未来一到两年重点决策的改变对各个业态下在收入、成本、毛利、费用和利润以及资金运作等方面的影响。例如在北京地区,因为产业调整、环保政策、安全等各个方面的原因,对很多企业特别是传统生产制造、化工行业就有很大的影响,特定环境下的停工停产、人力成本的上升、上下游产业链的重塑、物流成本的增加等都促使集团型企业需要从整体来考虑如何应对。
三. 总结
基本上到这里,围绕集团型企业的重点经营分析的介绍就可以告一个段落,大家也可以从中看到其复杂性,实际上是综合了财务、业务、经营管理、行业因素等各个方面的考虑,最终要形成一个对集团高层管理决策有价值的一种可视化分析,让他们能够从各种不同的视角对集团经营有一个相对比较全面的了解。
在这个过程中,我始终认为业务永远是第一位的,商业智能 BI 的作用和目的是用以一种更加便捷和简单的方式来解读业务,从总到分、自上而下的回答在业务解读过程中的各种问题。这就要求在项目建设过程中,商业智能 BI 实施交付的方法论要紧扣业务本身,呈现重点目标数据、体现集团经营管理思路、定位问题和发现问题。最终,商业智能 BI 仍然要回归到业务、回归到管理本身,帮助企业提升决策的效率与质量。
8. 应重点分析哪些店铺数据?
店铺运营后台的基础数据
流量数据:页面停留时间丶访问深度丶访客数等;
销售数据:成交用户数丶客单价丶支付宝成交量率等;
转化数据:UV转化率丶宝贝页面成交转化率丶Call in转化率丶询单转化率等,这些都是淘宝卖家可以在后台得到的数据。
以下是要重点分析的数据:
(1)流量数据
浏览量(PV)/访客数(UV)=平均访问深度 也就是说每个人平均的访问页面,这里希望数值越高越好,这样代表店铺的产品具有一定的黏度,客户停留时间长,这样买家才有可能令买家产生购买的冲动,客服才有时间去进行引导销售。
还有同样要关注的是宝贝页浏览量丶宝贝页访客数。
(2) 销售数据
在量子里面有一个销售分析模块,看到拍下的总金额和支付宝成交金额和客单价,用支付宝成交金额/拍下的总金额=支付宝成交率这个支付宝成交率在参加活动和运营考核上都是非常重要的,同时,换一个角度在拍下没有付款的客户,去催款,形成交易,这样催款成交,远远比去开发一个新客户容易的多,所以要留意这些数据,不要忽略了这种催款的成交。
Call in转化率=咨询用户数/访客数
询单转化率=成交用户数/咨询用户数
数据分析就是总结规律找原因
数据公式:
销售额=UV*UV转化率*客单价
销售额=宝贝页访客数*宝贝页成交转化率*客单价
这些公式可以带来提示,访客数也就是流量。
流量=推广+搜索+其他
推广流量来自于硬广丶丶直通车。淘宝客丶专题活动
搜索流量来自于名称搜索丶类目搜索
其他流量来自于收藏及后台丶江湖及帮派丶直接访问丶站外推广丶其他
如果销售额没有达到预期,需要找更适合一些方式去尝试来提高流量。
流量图表中比例中要是有一项达到70%左右,那时不健康的,因为最终的目的是提高的流量,要是这个没有达到,那就不健康了。
UV转化率=Call in转化率*询单转化率
如果是流量是足够的,但这些客户都不买那怎样处理呢,首先要分析是Call in转化率不高呢,还是询单转化率不高,找出问题所在。Call in转化率就是今天来的人有多少咨询,要是买家愿意来咨询的时候那代表产生了一定的购买欲望,那要考虑哪些因素影响到买家的购买欲望。
a丶 页面设计是否专业丶精美丶有没有风格。
b丶 商品的展示,是否把商品的卖点和细节突显出来展示。
c丶 商品的陈列,是否把买家最喜欢看的最愿意买的转化率最高的商品放在最多人浏览到的页面。
d丶 促销活动,当买家有一点购买欲望的时候,因为店铺还有活动,那么会因为活动优惠会马上决定购买。
e丶 产品品牌,商城的客户对于价格的敏感度是低于集市的,客户希望买到的是品牌的服务丶附加值丶有的产品。
现在买家不是图便宜是要攒便宜,要是以上的几点都做好了,那么Call in转化率应该会提高了。
当Call in转化率提高了之后,会有很多人咨询,是否能成交呢,那这里询单转化率的唯一因素就是客服,要统计客服有多少人咨询了没有买,一定要对客服有所要求,客服是怎样应对买家的,是否拥有专业知识,服务的心态是否好,这些都非常重要。
如果这个时候流量也高了,转化率也不错了,就是需调整客单价。
客单价=商品单价*平均购买数量:
店铺里的产品一定是有一些牺牲商品的利润来获取较大流量的,有一些是季节性比较热卖的,会带来利润的,同样有些产品价格要适当高一些,来体现我们店铺的品牌和实力。
平均购买数量就是关联销售做的怎样的表现,影响到这些的是客服推荐丶商品搭配和促销活动。
(3)访问黏度:
平均丶人均丶页面调试率丶实时客户访问路径,这些数据是Call in转化率是有关系。
搜索关键词丶店内搜索关键词丶淘宝搜索关键词:
行业热卖关键词,要知道行业最热卖的关键词,以及买家最想买,最关心的东西,以及店铺里面有没有买家喜欢的东西,已近买家到了店铺想买什么东西,这些都可以从这些数据得到。
这些数据拿到之后可以进行产品结构的调整丶进行宝贝标题调整和宝贝属性优化等
(4)宝贝相关关键词分析:
促销宝贝明细:可以分析看看,促销产品中访客数最多的宝贝成交转化率不一定是最高的,那要分析一下这个宝贝的详情是否有些地方需要修改,Call in转化率丶询单转化率的问题所在,要对客服的质量进行考量。还有可以把宝贝成交转化率高的宝贝加大展现的机会和力度。
零成交促销宝贝:不是所有的宝贝进行了促销之后都会有成交,如果这个宝贝的跳失率为50%的话那么意味着有50%的买家会因为看了这个宝贝而直接离开店铺,这个宝贝如果没有流量的话零成交那正常,如果是有大量的流量而零成交,那这个宝贝就不正常,它会赶走客户。要让成交转化率高的宝贝让更多的人来访问它。要对访客数高的而转化率低的宝贝寻找问题所在,有可能是因为大的活动而拉下了转化率,或者是宝贝的描述 不够吸引,宝贝的卖点不够吸引。
如果宝贝卖的的不好的,需要调整的是:促销活动的设计丶产品结构的调整丶关联销售设计等
(5)服务满意分析:
客户对店铺是否满意也可以体现在成交回头率和退款纠纷率,要是客户回头率高的话,那么老客户会经常买产品而且会介绍朋友来买,那么基本上不用做推广,这样可以把更多的成本做在服务上去。那么可以在店铺服务水平和老客户关怀上下功夫,从而提高服务满意度。