1. 数据分析培训大概需要多少费用
您好,很开心为您解答。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据应用
大数据虽然孕育于信息通信技术,但它对社会、经济、生活产生的影响绝不限于技术层面。更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析,而不是像过去更多凭借经验和直觉。具体来讲,大数据有以下作用。
1)对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。
云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值,大数据具有催生社会变革的能量。
2)大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。
在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生出一体化数据存储处理服务器、内存计算等市场。
在软件与服务领域,大数据将引发数据快速处理分析技术、数据挖掘技术和软件产品的发展。
3)大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”向“数据驱动”转变。
在商业领域,对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对,可以为商家制定更加精准有效的营销策略提供决策支持,可以帮助企业为消费者提供更加及时和个性化的服务。
在医疗领域,可提高诊断准确性和药物有效性。
在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4)大数据时代,科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法,在大数据时代,研究人员可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
大数据涉及到各个行业,现在能学好大数据技术,加上自己持续的学习,高薪是肯定的。
2. 数据分析培训难吗
千锋培训机构师资力量雄厚,老师认真负责,是一家靠谱的教育培训机构。
北京千锋互联科技有限公司(下面简称“千锋教育”),成立于2011年1月,立足于职业教育培训领域,公司现有教育培训、高校服务、企业服务三大业务板块。教育培训业务分为大学生技能培训和职后技能培训;高校服务业务主要提供校企合作全解决方案与定制服务;企业服务业务主要为企业提供专业化综合服务。公司总部位于北京,目前已在18个城市成立分公司,现有教研讲师团队300余人。
公司目前已与国内20000余家IT相关企业建立人才输送合作关系,每年培养泛IT人才近2万人,十年间累计培养超10余万泛IT人才,累计向互联网输出学科视频880余套,累积播放量超9700万余次。每年有数百万名学员接受千锋组织的技术研讨会、技术培训课、网络公开课及学科视频等服务。
千锋教育成立教研学科中心,推出贴近企业需求的线下技能培训课程。课程包含HTML5大前端培训、JavaEE+分布式开发培训、Python人工智能+数据分析培训、全链路UI/UE设计培训、云计算培训、全栈软件测试培训、大数据+人工智能培训、智能物联网+嵌入式培训、Unity游戏开发培训、网络安全培训、区块链培训、影视剪辑包装培训、游戏原画培训、全媒体运营培训。采用全程面授高品质、高体验培养模式,学科大纲紧跟企业需求,拥有国内一体化教学管理及学员服务,在职业教育发展道路上不断探索前行。
3. 数据分析培训课程费用
您好,很开心为您解答。
大数据培训大概在2万左右(面授课),但如果是线上授课,估计会便宜点。
但费用不能作为评价一家大数据培训机构好不好的决定性因素,需要从师资力量、机构口碑、就业情况等多方面考察。
4. 数据分析培训学校需要多少钱
当前大数据行业真的是人才稀缺吗?对!未来人才缺口150万,数据分析人才最稀缺。先看大数据人才缺口有多大?根据LinkedIn(领英)发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是当下中国互联网行业需求最旺盛的六类人才职位。其中数据分析人才最为稀缺、供给指数最低。同时,数据分析人才跳槽速度也最快,平均跳槽速度为19.8个月。而清华大学计算机系教授武永卫去年透露了一组数据:未来3-5年,中国需要180万数据人才,但目前只有约30万人。
大数据行业未来会产能过剩吗?提供大数据技术与应用服务的第三方公司面临调整,未来发展会趋集中关于“大数据概念是否被过度炒作”的讨论,其实2013年的夏季达沃斯就有过。彼时支持“炒作”观点的现场观众达54.5%。对此,持反对意见的北京大学光华管理学院副教授苏萌提出了三个理由:1、不同机构间的数据还未真正流动起来,目前还只是数据“孤岛”;2、完整的生态产业链还未形成,尽管通过行为数据分析已能够分辨出一个消费者的喜好,但从供应到购买的链条还没建成;3、数据分析人才仍然极度匮乏。4年之后,舆论热点已经逐渐从大数据转向人工智能,大数据行业也历经整合。近一年间,一些大数据公司相继出现裁员、业务大调整等情况,部分公司出现亏损。那都是什么公司面临危机呢?基于数据归属,涉及大数据业务的公司其实有两类:一类是自身拥有数据的甲方公司,如亚马逊、阿里巴巴等;另一类是整合数据资源,提供大数据技术与应用服务的第三方公司。目前行业整合出现盈利问题的公司多集中在第三方服务商。对此,LinkedIn(领英)中国技术副总裁王迪表示,第三方服务商提供的更多的是技术或平台,大数据更多还是让甲方公司获益。在王迪看来,大数据业务要产生规模效益,至少要具备三点:算法、计算平台以及数据本身。“第三方大数据创业公司在算法上有一技之长,而计算能力实际上已经匀化了,传统企业如果用好了,和大数据创业公司没有区别,甚至计算能力更强,而数据获取方面,很多数据在传统行业内部并没有共享出来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。
来,第三方大数据公司获取这些数据是比较困难的,最后可能谁有数据,谁产生的价值更高。”说白了,数据为王。在2013年,拿到千万级A轮融资的大数据企业不足10家,到2015年,拿到千万级以上A轮融资的企业已经超过30家。直到2016年互联网资本寒冬,大数据行业投资热度有所减退,大数据行业是否也存在产能过剩?王迪认为,目前的行业整合属于正常现象,“经过市场的优胜劣汰,第三方服务领域会出现一些做得比较好的公司,其他公司可能被淘汰或转型做一些垂直行业应用。从社会来看,总的需求量一定是增加的,而对于供给侧,经过行业自然的洗牌,最终会集中在几家优秀的行业公司。
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。从上文中我们可以看出,未来十年大数据行业都是热门的,也还会有更多的行业和岗位顺应大数据的发展而产生。各行业的生态产业链都将联系在一起,大数据的发展前景是非常大的,所以大数据培训就业在目前看来是非常靠谱的,千锋教育致力打造高端大数据人才,想学大数据的朋友要抓住这个机会,给自己的梦想一个起飞的平台。
5. 数据分析培训班要多少钱
20天的大数据培训是非常靠谱的,一个培训机构了,因为只要20天就能够掌握这样的大数据培训,是机会难得的一个机会了,而且能够掌握大数据培训对你以后的工作都是非常有利的,培训升职加薪都有机会,只要你花20天时以说赶紧去报名吧,很稳靠谱
6. 数据分析培训多少钱
有靠谱的。这要分两种情况来分析,如果这个数据分析培训速成班是以培训数据分析师为目的的,那这种通常情况下来说,虽然速度比较快,但是学习的知识也比较多,也有很多的实践基础实验去操作,所以还是比较有前途的。
那如果这个培训速成班是为了以盈利为目的的话,那就不靠谱了,要具体问题具体分析。
7. 数据分析培训学费多少
我们通常把财务分析分为两类:
第一类:狭义的财务分析 - 以财务报表为基础。
第二类:广义的财务分析 - 结合企业实际经营情况。
第一类,简单介绍一下分析的内容:财务管理建设模型。
第二类:框架、思维与要点:集团型企业的 BI 经营分析如何做?
财务管理建设模型
建立财务驾驶舱,指标:资产、负债、利润、现金流、存货等,以下 by 派可数据财务分析案例( 数据均已脱敏 )。
利润分析。分析企业利润总额、累计利润总额、净利润、累计净利润、营业利润率、净利润率及同环比情况。
营业利润趋势分析、年利润对比分析、月利润对比分析情况。
收入分析。营业总收入、累计营业总收入、主营业务收入、累计主营业务收入、其他业务收入、累计其他业务收入及同环比情况。
年收入分析趋势,联动月收入情况趋势分析。
主要收入类型占比情况 —— 主营业务收入、营业外收入、其他业务收入及趋势分析情况。
成本费用分析。营业成本、主营业务成本、期间费用、财务费用、管理费用、销售费用及同环比情况。
不同年份费用率对比情况 —— 期间费用率、成本费用利润率、财务费用率、管理费用率、销售费用率年及月度趋势情况。
年期间费用对比分析,联动到期间费用占比分析。
年成本对比分析,联动到月成本对比分析。
资产负债分析,资产合计、负债合计、所有者权益合计等。
资产负债率月度趋势分析。
资产负债总体情况分析,通过下钻可以看到不同月份不同资产、负债和所有者权益情况。
各项目分析钻取分析,例如通过下钻流动资产可以看到货币资金、应收账款、其他应收款、交易性金融资产、应收股利等情况。
应收账款、应付账款月度趋势分析,及同环比情况。
资产负债总体分析,可以通过下钻钻取到不同的项目。
资产总体情况、资产变化趋势等。
资产项目分析,流动资产、非流动资产分析。
不同的资产项目占比分析,例如流动资产中应收账款、应收票据、预付款项、存货、交易性金融资产等分析。
负债与所有者权益情况分析。
财务能力指标分析 – 净资产收益率、存货周转率、流动比率、总资产报酬率、应收账款周转率、速动比率分析等。
盈利能力指标分析 —— 净资产收益率、营业利润率、营业毛利率、成本费用利润率、净利润率、总资产净利率、营业净利率、主营业务毛利率、主营业务利润率、总资产报酬率、资本收益率、股本报酬率分析等。
营运能力指标分析 —— 固定资产周转率、应收账款周转率、股东权益周转率、存货周转率、总资产利润率、流动资产周转率、应收账款周转天数、存货周转天数等趋势分析。
偿债能力分析 —— 流动比率、速动比率、现金比率、资产负债率、营运比率、长期负债比率等。
发展能力分析 —— 总资产增长率、固定资产增长率、资本保值增值率分析等。
其他能力分析 —— 销售费用率、管理费用率、财务费用率、期间费用率、固定资产比率、应付账款周转率、主营业务成本率、销售利润率等趋势分析。
税负分析 —— 税金合计、应交增值税、应交所得税、应交城市维护建设税、应交教育附加、印花税等同环比分析、年度、月度趋势及占比情况。
框架、思维与要点:集团型企业的 BI 经营分析如何做?
在目前国内大部分的商业智能 BI 项目中,项目的发起与启动都是从单一的业务领域或者部门发起的,比如财务、销售、运营等部门,基本上都是由小往大、由点及面,很少一上来直接就从集团层面从顶层全面铺开整体规划。一方面有资金、人力投入成本因素的考虑,另外一方面在于项目的磨合、经验的积累。就如同打仗一样,先从小规模的作战、局部战争开始积累与培养人才与技术经验,再到最后大手笔来组织兵团级别的战役。
但也有越来越多的自身 IT 基础信息化能力沉淀比较好的集团性企业,为了更加长远的规划与考虑,需要从一开始就要有一个相对明确的建设方向和思路,因此整体性和框架性思维就很重要。
派可数据集团经营分析案例
基于我们多年在集团型企业项目建设上的经验,给大家简单总结一下。
说明:本文案例所演示的数据均已做脱敏处理,包括部分维度数据。为了突出一些比较,有些数据在实际业务中可能并不合理,请读者忽略,重点在于理解一些分析思路与框架。
一. 集团型企业成长轨迹与挑战
在讲集团化企业 BI 经营分析建设之前,先了解一下集团型企业的成长轨迹。集团型企业在早期都是通过单一业务开始的,逐步随着我国改革开放的进程以及经济宏观政策的调整,出现了很多新的经济热点。
这些企业在参与社会经济建设的过程中也成功的抓住了这些经济热点并得以壮大发展,通过兼并重组、新设、合资等逐步进入了新的事业领域,最后对外就呈现出来了一种多组织、多业务、多业态的企业集团。
当然,集团化的企业在发展过程中也会面临各种各样的挑战,例如战略协同、集团化管控、财务与风险管控、人才管理与激励等等,这就要求集团化企业需要通过 IT 技术信息化的手段来梳理企业的各类业务协同与管理流程,提升透明度和加快工作效率。
同时,集团化企业在面对这些挑战的时候就不得不对其增长模式、盈利模式、耦合模式做出更加深入的思考,而这些模式的背后一切都离不开数据的支撑,对数据分析结果的论证、判断与决策。
二. 集团型企业经营分析框架
对于集团型企业的经营分析还是一个比较复杂的、系统性的工程,对参与到经营分析的团队和个人需要具备整体性的框架分析思维,也需要具备局部细节的探究能力,更需要具备例如财务、业务、组织管理、行业知识等相关学习和总结能力,同时还要求对数据有比较高的敏感性和很强的数据逻辑能力、洞察力。
对于不同规模、不同行业、不同形态、不同管理方式的集团型企业分析的深度和广度无法完全囊括,但对于很多分析思路而言还是有很多共通性的。比如财务报表分析,基本对每一家企业而言都是相对标准和统一的,可以从比较宏观的角度了解一家企业的财务与经营业绩。
但单纯的财务报表分析是无法全面衡量企业具体职能领域和具体业务活动的业绩表现,所以更多的时候是需要结合财务与实际的业务一起形成联动,对企业的经营做全盘的了解。
专业的财务分析不在本篇文章展开,对于专业的财务分析可以看一些上市公司的年报,这里只从集团型企业经营分析的视角结合一定的财务视角来展开。
集团收入、利润、资金与预算情况
从集团层面首先重点应关注的就是集团收入、利润、资金以及预算执行情况。从营业收入了解到集团目前的收入规模,离预算指标差额、完成率情况;从利润了解到集团目前的利润、预算指标及完成率执行情况;包括目前的资金(主要是流动资金)情况和营业收入、利润近今年的同比情况。
集团经营分析总体指标
如果单纯的从集团层面看以上这些指标分析不出来什么问题,所以就要从构成集团的重要结构,即业务板块来分析。
集团板块收入与预算执行情况
从上面的三张图中基本上对集团的重点业务一目了然,可以清晰的看出在这家集团型企业中房地产的收入以 130亿的收入规模贡献达到了 80%,其次新能源的达到了 17%,家具制造业 1.4%,其它的基本上就可以忽略不计,都在1%以下。所以对于这家集团,房地产板块的业务就是它的主营业务,新能源次之。
实际上,每一家集团对自己的重点的主营业务太熟悉太了解了,基本上不用分析就能知道,在这里重点实际上要关注的有几个方面的点:
第一,集团有无需要战略转型的业务要开拓与发展,当前这个业务发展的如何。尽管这个新开展的业务可能暂时收入规模还不大,但总体趋势可能是比较不错的,所以重点分析的实际上反而是新领域、新业务的拓展情况。
第二,在战略转型的过程中,目标是既要保持集团总体收入规模的增长,同时也要下降主营业务的比重。这一点意思就很明确,主营业务也要增长,其它重点新开拓的业务也要增长,但是其它重点业务增长的速度要远远高于主营业务。
集团板块利润与预算执行情况
单纯的看集团的利润分析感觉不到太大的问题,但是结合收入来看,对比就会很强烈。房地产行业的收入贡献在集团达到了 80%,但是利润贡献却只有 30%左右,0.32 亿元。反而,新能源的收入贡献只有 17%,但对集团的利润贡献却达到了41%,0.43亿元。同时,有一个在收入规模上完全被忽略掉的家具制造业以 2.36亿,1.4%的收入占比贡献了 28% 的利润贡献。
因为数据做了一些处理,我们暂且忽略行业和数据真实性,来思考以下几个问题:
1. 在一家集团型企业中是否存在收入规模大,但是盈利不足的业务板块比如 A 板块。但同时也存在着收入贡献占比不多,但是盈利能力却很强的业务板块,例如 B 板块 ?
2. A 板块是朝阳产业、还是夕阳产业,在未来的 5-10 年中是否能够维持这种规模收入增长,在以往的几年时间收入增长率怎么样 ?
3. B 板块是朝阳产业、还是夕阳产业,在未来的 5-10 年中是否有足够的市场增长空间和天花板,目前的增长速度能够保持多长时间 ?
这种思考都是战略层面的深度思考,进攻的产业有哪些? 防守的产业有哪些?防守到什么时候就可以抛弃? 进攻到什么阶段会遇到阻力,这种阻力能够承受到什么时候?
最后又看了下资金情况,可以按照主产业与次要产业看看货币资金、应收票据、应收账款、存货的情况。有多少现金在手上,有多少是别人欠我的,主要是哪些板块欠的比较多,还有多少压在手上、仓库里没有卖出去。
以上的几个点基本上要重点体现出来的就是:收入决定发展规模,利润决定发展质量。还有,整个过程完成的好不好,有没有达到预算执行目标,每个数据的表现都是需要仔细考虑和反馈的。为什么完成的比较好,为什么没有完成,都需要认真思考。
毛利、毛利率的分析定位
在分析上面的收入和利润过程中,大家可能会感觉总少了一点什么,比如毛利、毛利率。确实如此,毛利、毛利率的分析非常重要,但之所以没有放到集团层面去考虑主要有这么几个重点因素:
第一,毛利比较高的业务板块不一定是企业集团的重点收入板块,单纯比较毛利是比较局限的。比如上面有些业态即使毛利再高,但是由于收入规模很小,最终利润贡献也会小到忽略不计,达不到集团重点的经营分析层面。
第二,集团层面的毛利分析一定是放在重点收入业务板块和重点、新关注的业务板块。重点收入业务板块在很大程度上决定了企业集团的收入规模大小,它的毛利对最终利润水平非常重要。重点、新关注的业务板块代表了集团未来的重点业务、新领域、新市场的开拓,在未来收入达到一定的增速、水平和规模的时候,毛利的高低直接影响最终利润的规模大小。
所以对于集团型企业而言,对于毛利水平的分析一定是围绕收入规模占比大的业务板块或是决定未来集团战略转型的新业务板块,或者是老业务板块中的新产品线。因此,关于毛利和毛利率的分析是需要从集团层面下沉到具体的业务板块、业务板块的重点企业、重点企业的重点产品线或新产品线这样的一种分析和比较。
简单总结,毛利、毛利率的分析结构:
1. 集团 -> 重点业务板块 -> 重点企业 -> 重点产品线。
2. 集团 -> 重点业务板块 -> 重点企业 -> 新产品线。
3. 集团 -> 新业务板块。
财务报表视角下的企业
在上面提到的经营分析中,实际上也会涉及到大量的财务分析指标,可以结合集团企业的实际情况从宏观的例如盈利能力、风险控制能力、成长能力三个层面、六个关键点来评价企业整体财务表现。
1. 盈利能力主要体现在获利性和资产使用效率两个方面:
获利性 —— 在同等业务量和营业收入水平下,降低成本以产生更多利润的能力,即如何最大化利润表的 最终行 Bottom Line (净利润)。
资产使用效率 —— 在同等资源占用和生产能力(资产规模)下,取得更高业务量、营业收入或现金流入的能力,即如何最大化利润表的第一行 Top Line (营业收入)或最大化经营利润的变现速度。
2. 财务风险控制能力主要体现在流动性、偿付性和财务结构三个方面:
流动性 —— 现金是否足够支撑日常运营的支出,以及流动负债是否可由足够的流动资产来偿还,即评价企业的短期偿债能力。
偿付性 —— 企业是否可以偿还长期负债,企业的长期偿债能力如何。
财务结构 —— 资本中不同股权与债权的比例,不同比例下财务杠杆作用以及对利润的影响。
3. 成长能力主要体现在经营增长方面:
经营增长 —— 企业在长期发展中业务量规模的扩张程度,资源投入的增加速度,以及所带来的收入和盈利的增长速度。
反映以上三个层次六大关注点的财务指标有很多,集团型企业也需要根据自身运营特点,围绕这个基本的财务分析框架来选择合适的财务指标进行科学评价。
行业影响、市场影响因素
任何数据的解读都离不开行业性,尤其是集团型的在收入规模达到一定水平下的企业,行业与市场因素对收入、毛利、利润的影响都会非常大,以下面几个行业为例:
光伏发电行业 - 资金密集性行业,主要以自有资金、银行借款、融资性租赁来筹措资金,整体负债较高。如未来宏观经济形势发生不利变化或信贷收缩,公司业务的持续发展可能会受到不利影响。同时,光伏电站项目投产到进入补贴名录时间较长,可再生能源基金收缴结算周期较长等因素,导致国家财政部发放可再生能源补贴存在一定的滞后,对标的公司现金流压力比较大。
医药行业 - 第一,容易受市场政策影响,例如:2019年国家卫健委发布的《关于印发第一批国家重点监控合理用药药品目录(化药及生物制品) 的通知》,对西医开具中药处方加强了管理,可能会导致中药品种在部分医院的处方和推广面临困难。第二,医保和基药目录产品进入医院需要通过药品招标采购流程,受医保支付压力影响,近年的招标采购中降价成为普遍的趋势。 第三,国家对通过一致性评价的产品实施带量采购,药品价格降幅明显。包括受环保等政策影响,近年来化学原料药价格大幅上涨,未来几年仍可能继续小幅上涨。
化工行业 - 化工行业主要上游行业为石化行业,市场波动受国际原油价格直接影响,下游行业多为民生行业,受宏观经济影响很大。包括主要原材料价格波动引发的成本增加无法直接向市场客户进行转移,利润空间缩小。同时,因安全生产监管、环保监管等各个方面的原因,企业的生产经营也会受到比较大的影响。
通过行业分析,了解所在行业整体发展收入规模、行业收入增速、整体毛利、利润情况对比集团各业务板块实际发展情况,以及在行业中处于一个什么样的市场位置基本上就可以大概判断出集团主要业务板块在市场的竞争力表现。行业收入增速快,但业务板块收入水平明显低于行业平均水平,是市场品牌宣传力度不够、市场没有打开还是产品竞争力不够,到底是哪些因素的影响 ? 行业细分领域毛利率整体水平高,但在该行业业态下的企业毛利率水平低下,又是哪些因素导致的 ?只有将数据置身于行业水平来对比了解,这样才更容易找到与行业内头部企业的差距,以及不断思考怎样做才能做得更好。
业态 - 企业 - 产品线,企业重点调整与决策影响的考虑
对于重点业态下的重点企业,重点业态下的重点产品线以及涉及到集团产业升级、战略调整目标下的新业态、新业务领域、新产品线均应该纳入到集团经营层面进行深入分析,重点仍然分析的是收入、成本、毛利、费用与利润。
重点业态追求效率。对重点业态的关注除了对收入规模的关注外,重点关注的是利润水平,因为重点业态的发展跟随行业发展水平可能增速已经达到一定的瓶颈,在发展增速能够保持在一定水平的前提下,通过对成本、费用的控制来提升利润率水平,本质上追求的是效率的提升。
新业态追求规模和占有率。对新业态的关注重点放在收入增长规模的变化,代表了集团型企业未来变革、升级转型的趋势和方向,寻找增长第二级,以市场占有率为目标,本质上这个阶段追求的是市场规模。
同时,也应该注意到集团型企业在未来一到两年重点决策的改变对各个业态下在收入、成本、毛利、费用和利润以及资金运作等方面的影响。例如在北京地区,因为产业调整、环保政策、安全等各个方面的原因,对很多企业特别是传统生产制造、化工行业就有很大的影响,特定环境下的停工停产、人力成本的上升、上下游产业链的重塑、物流成本的增加等都促使集团型企业需要从整体来考虑如何应对。
三. 总结
基本上到这里,围绕集团型企业的重点经营分析的介绍就可以告一个段落,大家也可以从中看到其复杂性,实际上是综合了财务、业务、经营管理、行业因素等各个方面的考虑,最终要形成一个对集团高层管理决策有价值的一种可视化分析,让他们能够从各种不同的视角对集团经营有一个相对比较全面的了解。
在这个过程中,我始终认为业务永远是第一位的,商业智能 BI 的作用和目的是用以一种更加便捷和简单的方式来解读业务,从总到分、自上而下的回答在业务解读过程中的各种问题。这就要求在项目建设过程中,商业智能 BI 实施交付的方法论要紧扣业务本身,呈现重点目标数据、体现集团经营管理思路、定位问题和发现问题。最终,商业智能 BI 仍然要回归到业务、回归到管理本身,帮助企业提升决策的效率与质量。