数据分析遗传算法(遗传算法介绍)

虚拟屋 2022-12-19 19:47 编辑:admin 294阅读

1. 遗传算法介绍

遗传算法(Genetic Algorithm,GA)最早是由美国的 John holland于20世纪70年代提出,该算法是根据大自然中生物体进化规律而设计提出的。是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

该算法通过数学的方式,利用计算机仿真运算,将问题的求解过程转换成类似生物进化中的染色体基因的交叉、变异等过程

2. 遗传算法的原理详解

遗传算法可以说明优胜劣汰。遗传算法主要思想就是利用达尔文优胜劣汰的原则,选择好的保留,不好的淘汰,最终目的找到最优的。遗传算法已被人们广泛地应用于组合优化,机器学习,信号处理,自适应控制和人工生命等领域造福人类进步向前。

3. 遗传算法概述

都属于智能优化算法但是蚁群算法具有一定的记忆性,遗传算法没有蚁群算法有几种原则,比如觅食原则,避障原则等,遗传算法没有蚁群算法属于群智能优化算法,具有并行性,每个粒子都可以主动寻优,遗传算法不行蚁群算法基于信息素在环境中的指示,遗传算法是基于优胜劣汰的生物进化思想遗传算法有选择,交叉,变异三种算子,每种算子又有各自的不同方法,通过对算子方法的修改和搭配,可以得到不同的改进遗传算法蚁群算法则多和其他智能算法相结合,得到改进的蚁群算法

4. 遗传算法的组成

大自然有种神奇的力量,它能够将优良的基因保留下来,从而进化出更加强大、更加适合生存的基因。

遗传算法便基于达尔文的进化论,模拟了自然选择,物竞天择、适者生存,通过N代的遗传、变异、交叉、复制,进化出问题的最优解。遗传算法看似神奇,但实现思路却较为简单。本文先跟大家介绍遗传算法的基本思想,然后用遗传算法来解决一个实际问题,最后给出遗传算法的代码实现和解析。

5. 遗传算法介绍图

遗传算法,退火算法 ,神经网络算法,贪心算法,都属于数学计算方法范畴。到底它们属于启发式算法还是智能计算,尚无标准的统一的定义。神经网络的研究有许多地方涉及到全局最优化计算问题。但是在寻优过程中往往导致局部极限或收敛速度慢。为此采用退火算法(确切是模拟退火算法)或遗传算法加以改进。因为这些算法建立的仿真模型可应用于模式识别、图象处理、控制、优化、预测等等,能够模仿人脑结构以及对信息的记忆和处理功能,具有一定的人类智能,所以有的书上认为这些算法是智能计算。不过,人工神经网络只是对大脑的粗略而简单的模仿,与人的智能差得很远,而且神经网络算法实质是解决一种非线性问题算法,因而在实际研究中不把神经网络算法看作智能计算,而认为只是启发式的一种算法。至于贪心算法是梯度下降优化的一种算法,遗传算法是模仿生物进化过程的一种寻优算法。

6. 遗传算法简单介绍

f=inline('-(x+10*sin(5*x)+7*cos(4*x))');[x,val]=ga(f,1,[],[],[],[],0,9);x,val=-val%注:由于遗传法的不确定性,每次得到的解可能不同。 ————————————————————————————————ga是matlab自带的遗传工具箱中的遗传算法函数,其中已经用到了选择、交叉、变异,你如果想知道其具体是怎么实现的,可以自己打开ga的源程序去看。

7. 遗传算法介绍ppt

首先有个很神奇的现象:人类以及动物的进化都是朝着好的方向发展,虽然有的往坏的方向发展了,但是总体肯定是往好的方向发展。

这看似不奇怪,但是我们知道,人类的基因组合是随机的,没有上帝约束。这种随机过程的结果却是一致的!!!!!我们的遗传算法就是从这里得到启发!比如我要求y=x1+x2的最大值,两个变量,我不用传统的数学方法,就用幼儿园的方法,把所有可能取值带进去算,然后找出最大的就行了!但是,有时候取值是连续的,没关系!使其离散化,就像把模拟信号化成数字信号一样!还有个问题,如果取值太多咋办?这就是遗传算法的精髓! 首先,我不用取所有可能取值,我只取几十个或者几百个(自己定),然后进行处理,怎样处理呢?让我们回到刚开始的人类进化问题,虽然没有上帝的帮忙,但是我们知道,自然界遵循优胜劣汰的发贼,遵循交叉变异的法则,虽然不能数字化,但是这是个趋势!我们就是把这种法则数学化!所取的几十个值我要剩下哪些?要抛弃哪些?要处理哪些?这都要我们自己选择,肯定是选择最合适的取值留下,经过一系列的处理,就生成了新的群体,然后再处理,自己约定处理到第几次就可以了,取出现过的最大值 不用担心取到的是不是最大值,因为数学上已经有了证明,这种方法是收敛的,概率是1,所以尽管放心的做,具体的做法要参考相关书籍,不难的。遗传算法的最大用处就是解决数学理论不能解决的问题!比如路径规划,调度问题……

8. 遗传算法的基本内容

适应度计算是评价个体适应环境的能力,在进行选择操作时经常用到,它的选取是否恰当直接影响到遗传算法的性能,所以就形成了很多计算适应度的函数,改进这些适应度函数是为了使适应度能更好的反映个体的优劣,使得适应度低的个体被淘汰,适应度高的个体被保留。自适应的适应度函数可以随着种群代数的增加自适应的调整。

在算法的开始阶段,适应度差别较大,为了防止一些适应度较差的个体在一开始就丢失,可以通过改变适应度函数使得它们得以保留下来,另外,当种群趋于收敛时,适应度差别很小,这时为了加快收敛的速度,应对适应度进行调整,使得个体适应度差别增大,从而更快的收敛到全局最优解。常用的适应度变换方法有:线性变换、幂函数变换和指数变换。