百度 大数据可视化(51大师兄是哪个公司的?)

虚拟屋 2023-05-15 00:11 编辑:admin 300阅读

一、51大师兄是哪个公司的?

大师兄(上海)云数据服务有限公司

大师兄(上海)云数据服务有限公司成立了,今天也正好是成立的4周年生日,四次春秋的更替,四载辛勤的努力,大师兄平台旗下已有集财税、法律、投融资、知产综合等四大专业领域于一体的中小企业在线互动专业服务平台——“51大师兄”APP及小程序、51大师兄云数据可视化分析终端、大师兄“线上直播管理平台”完整服务体系。

二、免费的数据可视化工具?

不做则已,一旦做了,自然要用上新技术。这个道理放在BI可视化分析上也同样行得通,毕竟新技术新功能使用简单、效率高、分析效果好。但问题就在于:去哪里试用BI可视化分析的新技术新功能?当然是由资深BI厂商奥威软件独立开发的SpeedBI数据分析云免费版。这里汇聚了BI可视化分析新技术,能让个人用户、正在考察BI的企业级用户免费试用各种新功能,更合理评估奥威BI软件的可视化分析能力与效果。

智能语音,给你一个用说就能做分析的平台

SpeedBI数据分析云新增智能语音功能,实现用说的来操作BI的效果。就如在年终会议上,在各种思想看法相互碰撞的探讨会上,不用操作鼠标,只需对着屏幕发出数据分析指令,下一秒屏幕上将呈现一份完整的可视化分析报表。手动切换报表?手动制作BI可视化分析报表?手动修改数据源、抽取数据?不!只需用说的,SpeedBI数据分析云将自动在后台完成数据智能匹配、智能分析,并最终以图像化分析报表呈现出来。

全新更优布局,新手上路不懵逼

SpeedBI数据分析云采用最新布局界面,将常用的、重要的功能模块放在醒目位置,不在需要从其他地方调用,直接在操作页面上就能应用,步骤更少、操作更快。

新布局不仅更有利于精简BI报表制作步骤,提升智能数据分析效率,同时也对新手上路更友好,新人再也不用担心难以适应新平台。

填报功能深度优化,使用更顺手

SpeedBI数据分析云基于原填报功能进行了深度优化,优化范围覆盖附件上传、填报查询、审批、填报列来源定义等多个方面。

除填报功能外,SpeedBI数据分析云还同时针对性优化内存计算功能、增加更丰富交互功能、新增多项简表功能优化,如通过简表行-列拼接实现复杂的中国式报表等。

SpeedBI数据分析云同步更新奥威BI系列各项先进智能可视化分析功能与板块,致力于为更广泛的BI用户提供第一手BI新功能体验,协助企业用户更全面科学评估BI功能效果。欢迎来自各行各业,有着丰富智能数据分析、数据可视化需求的用户免费登录SpeedBI数据分析云,体验奥威BI强大、实用的智能可视化分析效果。

三、云上图是什么?

云上图是指基于云技术的地图服务,其特点是可以将实时地理位置数据和各种地理信息细分为若干独立的层,并联合其它云服务对他们进行分析、处理和管理。云上图通过将数据可视化,可以帮助企业、个人等客户进行地理空间数据的分析和决策。

四、python可视化界面怎么做?

本文所演示的的可视化方法

散点图 (Scatterplot)

直方图 (Histogram)

小提琴图 (Violinplot)

特征两两对比图(Pairplot)

安德鲁斯曲线 (Andrews curves)

核密度图 (Kernel density estimation plot)

平行坐标图 (Parallel coordinates)

Radviz (力矩图?)

热力图 (Heatmap)

气泡图 (Bubbleplot)

这里主要使用Python一个流行的作图工具: Seaborn library,同时Pandas和bubbly辅助。为什么Seaborn比较好?

因为很多时候数据分析,建模前,都要清洗数据,清洗后数据的结果总要有个格式,我知道的最容易使用,最方便输入模型, 最好画图的格式叫做"Tidy Data" (Wickham H. Tidy data[J]. Journal of Statistical Software, 2014, 59(10): 1-23.) 其实很简单,Tidy Data格式就是:

每条观察(记录)自己占一行

观察(记录)的每个特征自己占一列

举个例子,我们即将作图的数据集IRIS就是Tidy Data(IRIS(IRIS数据集)_百度百科):

Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。

该数据集包含了5个属性:

Sepal.Length(花萼长度),单位是cm;

Sepal.Width(花萼宽度),单位是cm;

Petal.Length(花瓣长度),单位是cm;

Petal.Width(花瓣宽度),单位是cm;

种类:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),以及Iris Virginica(维吉尼亚鸢尾)。

IRIS数据

可以看到,每条观察(ID=0,1,2...)自己占一行,每个特征(四个部位长/宽度,种类)自己占一列。Seaborn就是为Tidy Data设计的,所以方便使用。

所以这个数据集有6列,6个特征,很多时候做可视化就是为了更好的了解数据,比如这里就是想看每个种类的花有什么特点,怎么样根据其他特征把花分为三类。我个人的喜好是首先一张图尽量多的包含数据点,展示数据信息,从中发现规律。我们可以利用以下代码完全展示全部维度和数据这里用的bubbly:

三维图,全局观察

Python做出来,其实是一张可以拖动角度,放大缩小的图,拖一拖看各角度视图会发现三类还是分的挺明显的。Github上这个bubbly还是很厉害的,方便。

接下来开始做一些基础的可视化,没有用任何修饰,代码只有最关键的画图部分,可视化作为比赛的一个基础和开端,个人理解做出的图能看就行,美不美无所谓,不美也不扣分。因为

散点图,可以得到相关性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大

散点图

使用Jointplot, 看两个变量的分布,KDE图,同时展示对应的数据点

就像上一篇说的,比赛中的每个环节都至关重要,很有必要看下这些分布直方图,kde图,根据这些来处理异常值等,这里请教,为什么画了直方图还要画KDE??我理解说的都是差不多的东西。

关于KDE:"由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。"

无论如何,我们先画直方图,再画KDE

直方图KDE 图

这里通过KDE可以说,由于Setosa的KDE与其他两种没有交集,直接可以用Petailength线性区分Setosa与其他两个物种。

Pairplot

箱线图,显示一组数据分散情况的统计图。形状如箱子。主要用于反映原始数据分布的特征,关键的5个黑线是最大值、最小值、中位数和两个四分位数。在判断异常值,处理异常值时候有用。

BoxPlot

小提琴图

Violinplot

这个Andrews curves很有趣,它是把所有特征组合起来,计算个值,展示该值,可以用来确认这三个物种到底好不好区分,维基百科的说法是“If there is structure in the data, it may be visible in the Andrews' curves of the data.”(Andrews plot - Wikipedia)

Andrews' curvesradviz

Radviz可视化原理是将一系列多维空间的点通过非线性方法映射到二维空间的可视化技术,是基于圆形平行坐标系的设计思想而提出的多维可视化方法。圆形的m条半径表示m维空间,使用坐标系中的一点代表多为信息对象,其实现原理参照物理学中物体受力平衡定理。 多维空间的点映射到二维可视空间的位置由弹簧引力分析模型确定。 (Radviz可视化原理 - CSDN博客) ,能展示一些数据的可区分规律。

数值是皮尔森相关系数,浅颜色表示相关性高,比如Petal.Length(花瓣长度)与 Petal.Width(花瓣宽度)相关性0.96,也就是花瓣长的花,花瓣宽度也大,也就是个大花。

不过,现在做可视化基本上不用python了,具体为什么可以去看我的写的文章,我拿python做了爬虫,BI做了可视化,效果和速度都很好。

finereport

可视化的一大应用就是数据报表,而FineReport可以自由编写整合所需要的报表字段进行报表输出,支持定时刷新和监控邮件提醒,是大部分互联网公司会用到的日常报表平台。

尤其是公司体系内经营报表,我们用的是商业报表工具,就是finereport。推荐他是因为有两个高效率的点:①可以完成从数据库取数(有整合数据功能)—设计报表模板—数据展示的过程。②类似excel做报表,一张模板配合参数查询可以代替几十张报表。

FineBI

简洁明了的数据分析工具,也是我个人最喜欢的可视化工具,优点是零代码可视化、可视化图表丰富,只需要拖拖拽拽就可以完成十分炫酷的可视化效果,拥有数据整合、可视化数据处理、探索性分析、数据挖掘、可视化分析报告等功能,更重要的是个人版免费。

主要优点是可以实现自助式分析,而且学习成本极低,几乎不需要太深奥的编程基础,比起很多国外的工具都比较易用上手,非常适合经常业务人员和运营人员。在综合性方面,FineBI的表现比较突出,不需要编程而且简单易做,能够实现平台展示,比较适合企业用户和个人用户,在数据可视化方面是一个不错的选择;

这些是我见过比较常用的,对数据探索有帮助的可视化方法。