医院数据挖掘商业模式(医疗大数据模型)

虚拟屋 2022-12-18 00:19 编辑:admin 300阅读

1. 医疗大数据模型

医学信息学方向 该专业方向培养在医院信息化、医疗仪器智能化、区域卫生信息系统与网络工程、医药电子商务等相关领域从事研究与开发、教学及管理的高素质专门人才。

要求掌握生物医学、电子技术、计算机技术和信息技术的基本理论、基本知识和技能,了解生命科学与医学的相关理论和知识,在医院信息系统、社区医疗服务网络、生物信息处理等方面具有一定的创新性研究、设计和开发能力。

掌握一门外语,能熟练阅读专业外文书刊。 主要课程:高级程序设计、数字电路与逻辑设计、人体结构学、医学生理学、离散数学、微机原理与应用、计算机接口技术、概率论与数理统计、数据结构与算法、数据库系统原理与技术、计算机网络与应用、操作系统、临床医学概论、医院信息系统、软件工程与项目管理、生物信号处理、生物医学知识的整合与数据挖掘、医学图像处理、生物医学工程概论、生物医学数学模型与计算机仿真、自动控制原理、人工智能与专家系统等。

2. 医疗数据模型百度百科BMA

一是螺纹式连接:如7/16、N型、TNC型、SMA型等。由于采用螺纹式连接,使插头与插座配合更加稳定、可靠、防振抗撞能力更强。

二是卡口式连接:如BNC、C型、Q6型等。由于采用卡口式连接,使用方便,连接不易松动、分离又很迅速,很多医疗设备、电子仪器中使用。

三是插入式连接:如SMB、MCX,QMA,QN等。其特点是有些采用了锁紧结构。大部份都是体积小、重量轻、结构紧凑。适用于系统对重量、体积有要求的仪器设备,特点适用于抽屉式、排列式、积木式安装。

四是浮动(盲插)连接:如MBX、AFI,BMA等。由于浮动连接,使用方便,有一定的盲插功能,X,Y,Z三个方向能偏移1mm,甚至更大、分离很迅速,多用于PCB板之间用量较大的连接。

3. 医疗大数据模型分析

数据挖掘随着计算机技术得到了广泛应用,从而提高了数据利用效率,拓展了知识发现的广度与深度。数据挖掘已有较多成熟方法,并在医学大数据挖掘中取得了一定成果。数据挖掘是指从数据库中,提取隐含在其中的人们事先未知、潜在的有用的信息和知识的过程。目前,医院已积累了大量医疗相关数据。

数据挖掘在医学大数据研究中已取得了较多成果,通过文献检索,总结了三方面的应用现状。

疾病早期预警医疗领域往往需要更精确的实时预警工具,而基于数据挖掘的疾病早期预警模型的建立,有助于提高疾病的早期诊断、预警和监护,同时,也有利于医疗机构采取预防和控制措施,减少疾病恶化及并发症的发生。

疾病早期预警,首先要收集与疾病相关的指标数据或危险因素,然后建立模型,从而发现隐含在数据之中的发病机制和病情之间的联系。Forkan等采集日常监测的心率、舒张压、收缩压、平均血压、呼吸率、血氧饱和度等生命体征数据,以J48决策树、随机森林树及序列最小优化算法等建立疾病预警模型,用于远程家庭监测,识别未曾诊断过的疾病发生,并将监测结果发送到医疗急救机构,实现生命体征大数据、病人及医疗机构的完整衔接,以降低突发疾病及死亡的发生率。

Easton等利用贝叶斯分类算法建立了中风后遗症死亡预测模型,认为中风后遗症死亡概率与中风发生后的时间长短成函数关系,有助于中风后遗症患者的后续监护。Tayefi等基于决策树算法建立了冠心病预测模型,该模型发现hs-CRP作为新的冠心病预测标志物,比传统的标志物(如FBG、LDL)更具特异性。

慢性病研究糖尿病、高血压、心血管疾病等慢性病正在影响着人们的健康,识别慢性病危险因素并建立预警模型有助于降低慢性疾病并发症的发生。Alagugowr等建立的心脏病预警系统,从心脏病大数据库中提取特征指标,通过K-means聚类算法识别出心脏病危险因素,又以Apriori算法挖掘高频危险因素与心脏病危险等级之间的关联规则。Ilayaraja等则以高频项集寻找心脏病危险因素并识别病人风险程度,该方法能够回避无意义项集的产生,从而解决了以往研究中项集数量多、所需存储空间大等问题。

CH Jen等对慢性疾病并发症风险识别的研究分三个步骤,首先,选择健康人群体检数据和慢性病患者相关疾病数据,以带有序列前项选择的线性判别分析来寻找相关疾病的特征变量;然后,以K-NN对特征变量进行分类处理;最后,将K-NN算法的分类结果应用于慢性疾病预警模型的建立。Aljumah等先后以回归分析和SVM用于预测和判断糖尿病不同治疗方式与不同年龄组之间的最佳匹配,为患者选择最佳治疗方式提供依据。

Perveen等对糖尿病的预测研究,采用患者人口学数据和临床指标数据,并分别用Adaboost集成算法、Bagging算法及决策树三种算法来建立预测模型,认为Adaboost集成算法的精确性更高。

辅助医学诊断医学数据不仅体量大,而且错综复杂、相互关联。对大量医学数据的分析,挖掘出有价值的诊断规则,将对疾病诊断提供参考。Yang等基于决策树算法和Apriori算法,对肺癌病理报告与临床信息之间的关联性进行了研究,为肺癌病理分期诊断提供依据,从而可回避诊断中需要手术方法获取病理组织。

Becerra-Garcia等应用SVM、K-NN和CART三种算法对眼球电图进行信号预处理、脉冲检测和脉冲分类,为研究临床眼球电图检查中非自发扫视眼球运动的识别提供依据。彭玉兰等对某医院5年的乳腺超声数据进行了关联规则挖掘,建立乳腺病理诊断与超声诊断之间的关联规则,并开发了乳腺超声数据库数据检索系统,便于医生快速获得超声诊断和病理诊断的各种诊断信息和病例信息。

医学大数据挖掘已呈现广阔的发展前景和巨大的应用价值,将为疾病研究、临床及管理决策、医疗服务个性化及图像识别等众多领域带来更多支持。麦肯锡在其报告中指出,大数据分析可以帮助美国医疗服务业一年创造3000亿美元的附加价值,而美国医疗协会也称,改善医疗卫生事业的关键在于大数据。

目前,医院大数据中心、区域性卫生信息平台、国家医疗大数据中心的建立以及卫生信息互联互通标准和共享规范的制定,为数据存储和共享、推动医学大数据的应用提供了更多支撑。未来,医学大数据挖掘将不断更新,探索新的研究领域,推动研究成果转化。

4. 大数据医疗分析

有前途。

医疗大数据发展前景广阔,是一个横跨生物医学、心理学、信息学、网络科学、系统科学等诸多学科的新兴交叉性热点领域。如何使其能够得到更好规范、管理和共享利用,是未来研究的一个主要课题。此外,还应结合临床实践做一些预测性的工作,充分发挥医疗大数据的优势,可以解决利用医疗大数据研究成果,改变医学实践的发展模式,实现个体化治疗和群体性预防的目的。

5. 医疗数据模型 多少个维度

大数据作为在健康产业中的基础原动力,具有重要价值。公司多年积累的专业体检大数据,涵盖了生化、遗传、影像等多维度信息。

这些数据在公共卫生、个人健康管理等方面,可以从不同维度给消费者以健康画像,对危险因素做重要提示和预警,为政府部门制定相关慢病防控决策提供良好依据。

6. 医疗大数据概念

大数据(英语:Big data或Megadata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。

而大数据的主要特点就是数据量大、数据处理速度快、数据真实性高、数据类别复杂等,它们合起来被称为4V。

大数据也可以应用在警察预测犯罪的发生、预测选举结果,同时还能通过手机定位数据和交通数据建立城市规划,现在医疗行业也在做大数据的分析。

现在社会发展速度非常快,科技也很发达,信息的流通和人们之间的交流也非常密切,而大数据就是这个时代高科技的产物。

7. 医疗数据建模

医学图像数据库放射影像数据库建设项目正式启动,该数据库由国家卫健委健康委能力建设和继续教育中心主办,中国医学影像产学研用创新联盟、中华医学会放射学分会承办。该数据将形成10个以上基于器官或疾病的高质量多任务,标准的可扩展、可挖掘大样本标准数据库,以支持人工智能相关研究、建模、训练、检测及应用落地。

8. 医疗大数据案例

很好。

该专业是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科专业,其研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。

在医疗体制改革的大背景下,医疗下乡与精准治疗在逐步的进行市场布局,智能医学工程的核心是用智能替代人力,提高诊断的疗效,减少人力的消耗;借助大数据的分析工具,及时完善并快速预测相关的疾病趋势,为卫生健康事业保驾护航。

就业前景主要是针对大中型医疗设备制造厂家的研发人员、互联网背景下的医疗医药资源公司分析人员、国家卫生体系的公务员以及各业务单元的大区经理等等。

9. 医疗大数据模型有哪些

1、人工智能算法模型——线性回归

到目前为止,线性回归在数学统计中使用了200多年。算法的要点是找到系数(B)的这些值,它们对我们试图训练的函数f的精度影响最大。最简单的例子是y = B0 + B1 * x,其中B0 + B1是有问题的函数

通过调整这些系数的权重,数据科学家可以获得不同的训练结果。成功使用该算法的核心要求是在其中没有太多噪声(低值信息)的清晰数据,并删除具有相似值(相关输入值)的输入变量。

这允许使用线性回归算法来对金融,银行,保险,医疗保健,营销和其他行业中的统计数据进行梯度下降优化。

2、人工智能算法模型——逻辑回归

逻辑回归是另一种流行的AI算法,能够提供二进制结果。这意味着模型可以预测结果并指定y值的两个类别之一。该函数也基于改变算法的权重,但由于非线性逻辑函数用于转换结果的事实而不同。此函数可以表示为将真值与虚值分开的S形线。

与线性回归相同 - 删除相同的值输入样本并减少噪声量(低值数据)即为成功。这是一个非常简单的功能,可以相对快速地掌握,非常适合执行二进制分类。

3、人工智能算法模型——线性判别分析(LDA)

这是逻辑回归模型的一个分支,可以在输出中存在两个以上的类时使用。在该模型中计算数据的统计特性,例如每个类别的平均值和所有类别的总方差。预测允许计算每个类的值并确定具有最大值的类。为了正确,该模型要求根据高斯钟形曲线分布数据,因此应事先去除所有主要异常值。这是一个非常简单的数据分类模型,并为其构建预测模型。

4、人工智能算法模型——决策树

这是最古老,最常用,最简单和最有效的ML模型之一。它是一个经典的二叉树,在模型到达结果节点之前,每次拆分都有“是”或“否”决策。

该模型易于学习,不需要数据规范化,可以帮助解决多种类型的问题。

5、人工智能算法模型——K-Nearest Neighbors

这是一个非常简单且非常强大的ML模型,使用整个训练数据集作为表示字段。通过检查具有相似值的K个数据节点的整个数据集(所谓的邻居)并使用欧几里德数(可以基于值差异容易地计算)来确定结果值的预测,以确定结果值。

这样的数据集可能需要大量的计算资源来存储和处理数据,当存在多个属性并且必须不断地策划时会遭受精度损失。但是,它们工作速度极快,在大型数据集中查找所需值时非常准确和高效。

6、人工智能算法模型——学习矢量量化

KNN唯一的主要缺点是需要存储和更新大型数据集。学习矢量量化或LVQ是演化的KNN模型,神经网络使用码本向量来定义训练数据集并编码所需的结果。如上所述,矢量首先是随机的,并且学习过程涉及调整它们的值以最大化预测精度。

因此,发现具有最相似值的向量导致预测结果值的最高准确度。

7、人工智能算法模型——支持向量机

该算法是数据科学家中讨论最广泛的算法之一,因为它为数据分类提供了非常强大的功能。所谓的超平面是用不同的值分隔数据输入节点的线,从这些点到超平面的向量可以支持它(当同一类的所有数据实例都在超平面的同一侧时)或者无视它(当数据点在其类平面之外时)。

最好的超平面将是具有最大正向量并且分离大多数数据节点的超平面。这是一个非常强大的分类机器,可以应用于各种数据规范化问题。

8、人工智能算法模型——随机决策森林或Bagging

随机决策森林由决策树组成,其中多个数据样本由决策树处理,并且结果被聚合(如收集袋中的许多样本)以找到更准确的输出值。

不是找到一条最佳路线,而是定义了多条次优路线,从而使整体结果更加精确。如果决策树解决了您所追求的问题,随机森林是一种方法中的调整,可以提供更好的结果。

9、人工智能算法模型——深度神经网络

DNN是最广泛使用的AI和ML算法之一。有在显著改善深基于学习的文本和语音应用程序,机器感知深层神经网络和OCR,以及使用深度学习授权加强学习和机器人的运动,与DNNs的其他杂项应用程序一起。

10、人工智能算法模型——Naive Bayes

Naive Bayes算法是一个简单但非常强大的模型,用于解决各种复杂问题。它可以计算出两种类型的概率:

1.每个班级出现的机会

2.给定一个独立类的条件概率,给出一个额外的x修饰符。

该模型被称为天真,因为它假设所有输入数据值彼此无关。虽然这不能在现实世界中发生,但是这种简单的算法可以应用于多种标准化数据流,以高精度地预测结果。