1. 数据挖掘预测算法有哪些类型
数据挖掘分类方法有下列几种:
(1)决策树
决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。
(2) KNN法(K-Nearest Neighbor)
KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
(3) SVM法
SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。
(4) VSM法
VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。
在
2. 数据挖掘分为预测型数据挖掘
数据挖掘的方法:
1.分类 (Classification)
2.估计(Estimation)
3.预测(Prediction)
4.相关性分组或关联规则(Affinity grouping or association rules)
6.复杂数据类型挖掘(Text,Web ,图形图像,视频,音频等)数据挖掘数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
3. 数据挖掘预测经典算法
SPSS Clementine是一个数据挖掘平台, Clementine其功能强大的数据挖掘算法,使数据挖掘贯穿业务流程的始终,在缩短投资回报周期的同时极大提高了投资回报率
Clementine结合商业技术可以快速建立预测性模型。
Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛名。
4. 数据分析与挖掘的十大算法
数据挖掘的基本步骤是:1、定义问题;2、建立数据挖掘库;3、分析数据;4、准备数据;5、建立模型;6、评价模型;7、实施。
具体步骤如下:
1、定义问题
在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。
2、建立数据挖掘库
建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
3、分析数据
分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
4、准备数据
这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
5、建立模型
建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。
6、评价模型
模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。
7、实施
模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。
5. 常用的数据挖掘算法有哪些
“大数据”时代的数据挖掘的应用与方法
数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所以它所得到的信息应具有未知,有效和实用三个特征。因此数据挖掘技术从一开始就是面向应用的,目前数据挖掘技术在企业市场营销中得到了比较普遍的应用。它包括:数据库营销、客户群体划分、背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用记分、欺诈发现等。审计部门的数据挖掘以往偏重于对大金额数据的分析,来确实是否存在问题,以及问题在数据中的表现,而随着绩效审计的兴起,审计部门也需要通过数据来对被审计单位的各类行为做出审计评价,这些也都需要数据的支撑。
数据挖掘的方法有很多,它们分别从不同的角度对数据进行挖掘。其中绝大部分都可以用于审计工作中。1. 数据概化。数据库中通常存放着大量的细节数据,
通过数据概化可将大量与任务相关的数据集从较低的概念层抽象到较高的概念层。数据概化可应用于审计数据分析中的描述式挖掘,
审计人员可从不同的粒度和不同的角度描述数据集, 从而了解某类数据的概貌。大量研究证实, 与正常的财务报告相比,
6. 数据挖掘的分类和预测
1. analytic visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. data mining algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. predictive analytic capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
7. 数据挖掘中预测类算法
数据分析目的1:分类
检查未知分类或暂时未知分类的数据,目的是预测数据属于哪个类别或属于哪个类别。使用具有已知分类的相似数据来研究分类规则,然后将这些规则应用于未知分类数据。
数据分析目的2:预测
预测是指对数字连续变量而不是分类变量的预测。
数据分析目的3:关联规则和推荐系统
关联规则或关联分析是指在诸如捆绑之类的大型数据库中找到一般的关联模式。
在线推荐系统使用协作过滤算法,该协作过滤算法是基于给定的历史购买行为,等级,浏览历史或任何其他可测量的偏好行为或什至其他用户购买历史的方法。协同过滤可在单个用户级别生成“购买时可以购买的东西”的购买建议。因此,在许多推荐系统中使用了协作过滤,以向具有广泛偏好的用户提供个性化推荐。
数据分析目的4:预测分析
预测分析包括分类,预测,关联规则,协作过滤和模式识别(聚类)之类的方法。
数据分析目标5:数据缩减和降维
当变量的数量有限并且可以将大量样本数据分类为同类组时,通常会提高数据挖掘算法的性能。减少变量的数量通常称为“降维”。降维是部署监督学习方法之前最常见的初始步骤,旨在提高可预测性,可管理性和可解释性。
数据分析目的6:数据探索和可视化
数据探索的目的是了解数据的整体情况并检测异常值。通过图表和仪表板创建的数据浏览称为“数据可视化”或“可视化分析”。对于数值变量,可以使用直方图,箱形图和散点图来了解其值的分布并检测异常值。对于分类数据,请使用条形图分析。
数据分析目的7:有监督学习和无监督学习
8. 数据挖掘预测算法有哪些类型的
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统和模式识别等诸多方法来实现上述目标。
人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据,正是在这样的条件下,数据挖掘技术应运而生。
数据挖掘有很多合法的用途,例如可以在患者群的数据库中查出某药物和其副作用的关系。这种关系可能在1000人中也不会出现一例,但药物学相关的项目就可以运用此方法减少对药物有不良反应的病人数量,还有可能挽救生命。
扩展资料
目前数据挖掘的算法主要包括神经网络法、决策树法、遗传算法、粗糙集法、模糊集法、关联规则法等。
根据信息存储格式,用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及internet等。
数据挖掘过程是一个反复循环的过程,每一个步骤如果没有达到预期目标,都需要回到前面的步骤,重新调整并执行。不是每件数据挖掘的工作都需要这里列出的每一步。
9. 挖掘算法的数据特征有哪些
在维克托迈尔-舍恩伯格及肯尼斯库克耶编写的《大数据时代》提到了大数据的4个特点:
1大量
大数据的特征首先就体现为“大”,强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2高速
就是通过算法对数据的逻辑处理速度非常快,1秒定律,可从各种类型的数据中快速获得高价值的信息,这一点也是和传统的数据挖掘技术有着本质的不同.
3多样
广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析.
4价值
这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。你如果有1PB以上的全国所有20-35年轻人的上网数据的时候,那么它自然就有了商业价值.
与其说是大数据,不如说是大数据时代,
一是人类处理数据的能力显著增强。过去也有数据,但数据散乱,没有强大的处理能力,所以发挥不了作用。现在之所以说已经进入了大数据时代,就是因为人类的处理数据能力大大增强了。云计算和大数据是两个方面,如果没有云计算,也就无所谓大数据,云计算能够把海量的、零散的、有价值的数据进行快速处理并释放出价值。
二是数据整合的形式愈发明显。一般来讲,政府掌控了大约80%的公共数据。而在企业数据方面,像阿里巴巴、百度、腾讯等互联网巨头掌握了海量数据。 不管是政府数据,还是企业数据,抑或是社会数据,整合的趋势愈发明显。打通政务流、企业流、社会流,技术整合趋势是必然的。由于老百姓的消费行为可以影响政府决策,所以政府希望老百姓刷卡消费,让数据归集到政府这边。
三是大数据应用领域不断扩散。大数据在政治、经济、社会、文化、生态等几乎每一个领域都有着广阔的应用前景。
四是围绕大数据应用的创新持续活跃。我们看到新业态、新模式、新体制不断出现,市场的活力也在得到不断地释放,个人的创造性也被大大地激活,这是一个前所未有的时代。
上述大数据时代的四大特征,在中国似乎得到了很清晰的验证:网络规模全球第一 、网民数量全球第一 、智能手机用户全球第一 、网络社交参与人数全球第一、网购人数全球第一、电子商务交易额全球第一、移动支付全球第一;无处不在的网络 、无处不在的软件、 无处不在的计算 、无处不在的数据 、无处不在的互联网+。