30岁考数据分析师(高级数据分析工程师40岁就业)

虚拟屋 2022-12-24 18:44 编辑:admin 297阅读

1. 高级数据分析工程师40岁就业

展开全部

说实话,入门数据分析师行业并不难,但想竞争到较好的岗位就不太容易了。除了要有过硬的数据技能和扎实的实操能力,高情商更是不可或缺,此外还得具备流畅的沟通和表达能力,才能在芸芸众生之中脱颖而出。不过这些终究还是得不断磨练和成长,才能逐渐优秀和熟悉起来。对于数据分析师这个职位,你算是小白出身,做好自己的职业规划,可以让我们在职场中更加得心应手,不至于真正面临问题的时候束手无策。

做好职业规划,让自己的数据分析师之路走得更顺。

1、要知道,技术永远都是只是一种客观手段和谋生工具,产生价值、凸显价值才是王道。这里面涉及到诸多的自身能力需要不断磨练,比如个人的意志力、沟通能力、表述能力,还有你得好奇心、创造力和影响力等等。这些都是可以让你逐渐成长为一个优秀的数据分析师的重要素质。要去make the change and influence,不只停留在数字展示。

2、笨鸟先飞,拥有一个好的身体会使你能量倍增。初入职场,肯定事事要虚心向学求教,对于领导的指派任务,我们一定要高效完成,加班加点在所难免。职场里面那些充满能量、新鲜项目感兴趣、滔滔不绝做presentation的人通常都是有着很好的生活习惯、处理事情很快,吸收知识很快、愿意学习了解新事物,坚持锻炼的人。这个法则适用于大多职场。拼到后面其实是持久的耐力,就是不松懈,坚持对的事情。

3、别钻牛角尖,要灵活。如果一种方法试了好久都不行,停下来,问一问,试一试别的,可能会有新的出路。职场不是一个学术的地方。我们要认真做事,但是不要追着一个小的问题不放,这样很容易丢失掉大的东西, 负责任地讲,有很多项目是半途而废的,有很多数字不是准确的,我们要做的是顺势而为,抓住重点。Always focus on big picture.

4、先做倾听者,再做思考者,然后做好的提问者,最后做实现者。这里每一个环节都重要,先知道别人关心的是什么,有什么问题,然后要系统性考虑,有时候不要着急解决小问题,Focus on big picture,此外,提问出关键问题甚至能够帮助stakeholder更清楚了解他要的是什么,最后搞清楚了这些之后就是Action。

5、有意识地去跟人交流,特别是业务相关人员,以及各个条线的stakeholder,如果仅仅利用必要的时间,比如开会的时候交流彼此对业务对分析的看法,通常是不够的。我们作为分析人员,最好要走在前面,试探性的问问题,交流想法。提升自己举例子的能力,把复杂的东西通过简单的描述让别人理解很重要。

6、不停的总结,迭代。其实数据分析里面的分支学科还是很多的,ETL, Data Cleansing, 一些基本分析模型,Data visualization等等,不管是自己做过的项目经验,还是网上看来得好文章,或者同行交流来的新的好的内容,都可以不停的总结,试用,反馈,以此循环。长期来看是非常有好处的并且容易形成自己的体系。

2. 大数据分析工程师年薪

平均月薪20K,定期体检,五险一金,带薪年假,国家法定节假日,周末双休。

3. 大数据工程师就业形势

大数据专业还是很好就业的!

大数据覆盖各行各业,应用领域十分广泛。近年来人工智能、物联网也是迅速发展,而大数据是这些新兴技术的基础。大数据的就业三大方向:

1、大数据开发:顾名思义,主要是对大数据本身进行的开发工作;

2、大数据系统研发:或者说是大数据平台开发,一般只有大型企业才会有此类岗位,主要是为公司内部做大数据平台的开发;

3、大数据分析:这也很好理解,就是基于大数据做数据挖掘分析。

4. 40岁还能做数据分析师

,先mark下,关于金融行业的情况我找时间写。

目前从事金融大数据相关工作,下面的情况仅限本行业;就接触的情况来看,数据分析这一邻域大概就是这几部分的岗位为主:bi工程师,数据分析师,数据挖掘工程师,建模(算法)工程师,人工智能方向。各岗位异同其他答主已经说的很明白了,就不再说了。 但实际上各岗位间并没有太过明显的界限,例如数据分析师也(掌握sql,R,统计等知识)完全有可能向bi工程师或数据挖掘方向发展,只是技能的侧重不同而已。 数据分析师需求较大,尤其对于较大型的公司,从总部各部门到分公司甚至营业部都可能会配备自己的数据分析师,工作一般以数据查询及完成报告为主,技能侧重于ppt,sql。这类分析师的能力差异主要体现在行业经验及业务理解上。其他岗位包括数据挖掘,建模等岗位主要在集中公司总部,岗位数量上会少于数据分析,编程技能及统计知识要求会更高,往往对相关数据挖掘项目经验也有要求。 关于数据分析师的前景,在未来几年应该还是十分吃香的,但更长远来看就未必像其他答主描绘的那么美好;目前数据分析师吃香很大程度上是由于近几年各种数据相关的概念相继出现,导致数据分析师仍供不应求,但这种供需情况终会达到平衡,红利会逐渐消失。 另外,就目前情况来看,数据分析师入门难度相比很多行业并不算高,不像当医生的需要有医学背景,律师/工程师则要求相关从业资格。我认为,简单的sql查询在不久的未来将会成为一种通用技能,就类似现在office三件套的存在,到那时候简单的数据处理工作就不需要招聘专门的数据分析师了。 所以就长远来看,若想在行业内保持竞争力,要不在就业务方向积累经验建立起自己的壁垒,要么在技术方面有所建树。若留在原地的话,涨潮的时候可是会淹死的哦~~

5. 大数据分析工程师的就业前景

从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。

北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。这里给大家举几个例子: 现在的产品,由于销售渠道开始开始网络化,所以基本上每个产品在做客群划分、竞品分析、销售预测等等工作时都必须基于数据来进行建模并分析。以前那样只要写写产品分析书,画画产品原型,做做产品交互的“好日子”已经过去了。这么说吧,越来越多的公司里,如果产品不能拿数据出来支撑自己的工作,是基本上获取不到什么资源的支持。再拿运营来说,更加离不开数据了。大到做一个活动,目标人群如何划分,不同人群的方案是什么,预计投入多少产出多少,这些都需要数据支持;小到一个营销话术,也需要切分不通人群进行对照实验来决定。可以说,现在不依靠数据分析的运营已经越来越少。最后再举一个后台部门的例子。现在的HR在做人力规划时,从人员结构分析到配置策略分析再到成本分析,无论哪一项都需要使用到数据。除了本公司的人力数据外,还需要业务数据,竞对公司数据乃至于整个行业数据。通过大量数据的分析,可以更加精确的制定公司的人力资源战略。

6. 高级数据分析工程师40岁就业前景

数据分析专业的前景非常广阔,潜力巨大,社会需求量大,尤其是在一线城市,金融,互联网,电子商务行业等,都是紧缺人才。

一般就业可以去:国家安全部门,公检法部门,大型集团企业,银行,证券公司,基金公司,互联网公司等,只有技术到位,薪资待遇都不是问题。