大数据分析前景(大数据分析前景背景)

虚拟屋 2022-12-27 08:55 编辑:admin 75阅读

1. 大数据分析前景背景

从职位薪水来看,数据分析行业的高薪主要分布在长三角、珠三角和京津地区。

北京、上海和深圳的薪水位列第一方阵,均薪在10k+;杭州、宁波和广州位列第二方阵,均薪在9k+;其他沿海及内陆区域中心城市,如南京、重庆、苏州、无锡等位于第三方阵,均薪在8k左右。从职位量来看,北京、上海、深圳和广州位列第一方阵,职位量在30000+,杭州、成都、南京和天津位列第二方阵,职位量在20000+,武汉、西安、郑州等区域中心或省会城市对数据分析职位的需求也相对较高,职位量在10000+。从行业需求来看,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。不管是在企业还是社会,数据都已经开始扮演越来越重要的“角色”。在这种大势之下,数据分析思维已经不只是数据分析师的“专业”了,包括销售、市场、运营、策划、产品等等前端的职位都需要通过数据分析来帮助自己的工作,甚至连后台的财务、法务、人事等也开始需要通过数据分析来提升效率。可以这么说,如果你在企业之中工作,你未来会开始越来越多的和数据打交道,这个时候数据分析已经成为工作的必要条件。这里给大家举几个例子: 现在的产品,由于销售渠道开始开始网络化,所以基本上每个产品在做客群划分、竞品分析、销售预测等等工作时都必须基于数据来进行建模并分析。以前那样只要写写产品分析书,画画产品原型,做做产品交互的“好日子”已经过去了。这么说吧,越来越多的公司里,如果产品不能拿数据出来支撑自己的工作,是基本上获取不到什么资源的支持。再拿运营来说,更加离不开数据了。大到做一个活动,目标人群如何划分,不同人群的方案是什么,预计投入多少产出多少,这些都需要数据支持;小到一个营销话术,也需要切分不通人群进行对照实验来决定。可以说,现在不依靠数据分析的运营已经越来越少。最后再举一个后台部门的例子。现在的HR在做人力规划时,从人员结构分析到配置策略分析再到成本分析,无论哪一项都需要使用到数据。除了本公司的人力数据外,还需要业务数据,竞对公司数据乃至于整个行业数据。通过大量数据的分析,可以更加精确的制定公司的人力资源战略。

2. 大数据分析的背景

首要特征:数据量巨大

体量大是大数据区分于传统数据最显著的特征。一般关系型数据库处理的数据量在TB级,大数据所处理的数据量通常在PB级以上。

大数据所处理的计算机数据类型早已不是单一的文本形式或者结构化数据库中的表,它包括订单、日志、BLOG、微博、音频、视频等各种复杂结构的数据。

速度是大数据区分于传统数据的重要特征。在海量数据面前,需要实时分析获取需要的信息,处理数据的效率就是组织的生命。

在研究和技术开发领域,上述三个特征已经足够表征大数据的特点。但在商业应用领域,第四个特征就显得非常关键!投入如此巨大的研究和技术开发的努力,就是因为大家

都洞察到了大数据的潜在巨大价值。如何通过强大的机器学习和高级分析更迅速地完成数据的价值“提纯”,挖掘出大数据的潜在价值,这是目前大数据应用背景下苛待解决的难题。

3. 大数据发展背景

大数据在网络时代背景下具有大量性、多样性、高速性、价值性等特点。大数据也是一种资产, 如果能将其充分应用于企业中, 并且不断提高数据加工能力, 就能够通过数据的“增值”实现企业本身的增值。

大量数据信息的涌现, 给传统的企业财务管理带来巨大压力和挑战, 传统的企业财务管理方式已经无法满足现代企业管理需求, 必须应用大数据技术对企业财务管理的模式、内容和制度进行重构和创新, 从而更快、更高效地处理和应用数据信息。

4. 大数据分析前景背景调查

大数据产生的背景:

1、随着物联网、社交网络、云计算等技术不断融入我们的生活以及现有的计算能力、存储空间、网络带宽的高速发展,人类积累的数据在互联网、通信、金融、商业、医疗等诸多领域不断地增长和累积。

2、互联网搜索引擎支持的数十亿次web搜索每天处理数万TB字节数据。全世界通信网的主干网上一天就有万TB字节数据在传输。现代医疗行业如医院、药店等也都每天产生庞大的数据量如医疗记录、病人资料、医疗图像等。数据的量级不断升级、应用的不断深入和大数据不可忽视的价值让我们不得不探索如何才能让我们更好的受益于这些数据。

3、大数据是一次对国家宏观调控、商业战略决策、服务业务和管理方式以及每个人的生活都具有重大影响的一次数据技术革命。大数据的应用与推广将给市场带来千万亿美元收益的机遇,称为数据带来的又一次工业革命。

4、随着高速发展的信息技术,不断扩张的数据库容量,互联网作为信息传播和再生的平台,“信息泛滥”、“数据爆炸”等现象不绝于耳,海量的数据信息使得人们难以做出快速的抉择。

5、信息冗余、信息真假、信息安全、信息处理、信息统一等问题也随着大数据给人们带来价值的同时也造成了一系列的问题。人们不仅希望能够从大数据中提取出有价值的信息,更希望发现能够有效支持生产生活中需要决策的更深层次的规律。

6、在现实情况的背景下,人们意识到需要有效地解决海量数据的利用问题具有研究价值和经济利益。面向大数据的数据挖掘的特有两个最重要的任务。一是实时性,如此海量的数据规模需要实时分析并迅速反馈结果。二是准确性,需要我们从海量的数据中精准提取出隐含在其中的用户需要的有价值信息,再将挖掘所得到的信息转化成有组织的知识以模型等方式表示出来,从而将分析模型应用到现实生活中提高生产效率、优化营销方案等。

5. 大数据发展前景分析

随着我国政府对生物大数据行业发展极为重视,“十四五”国家重点研发计划“基础科研条件与重大科学仪器设备研发”重点专项中提出,面向生物大数据管理、深度挖掘和转化应用等核心技术方面的短板,研究生物大数据智能审编、分级管理、发布更新等关键技术,研发智能化管理系统。

这将推动我国生物大数据行业技术不断进步,产业链布局日益完善,所以生物大数据发展前景非常的不错!

6. 大数据分析师的前景

有前途。现在大数据工程师市场需求大,待遇好,晋升空间大

7. 大数据分析背景和意义

背景就是对现状的描述,而意义则是对背景研究的结果.研究背景比意义要宽泛,包含更多的内容。研究背景可以含研究意义,也可以是: 论研究内容的研究程度,(国内外)研究进展,技术理论发展过程,开展研究者的学术理论基础,硬件条件,外界(社会、学术界、政府)对该项研究的需求与支持情况,等。

研究背景就是主要是国内外现状、发展历程之类的;而意义主要是指这个东西在当下还不行,就诸多不足而言还存在着研究的价值和意义,在某些方面可以改进。

扩展资料

毕业论文(graduation study),按一门课程计,是普通中等专业学校 、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

从文体而言,它也是对某一专业领域的现实问题或理论问题进行 科学研究探索的具有一定意义的论文。

一般安排在修业的最后一学年(学期)进行。学生须在教师指导下,选定课题进行研究,撰写并提交论文。目的在于培养学生的科学研究能力;加强综合运用所学知识、理论和技能解决实际问题的训练;从总体上考查学生学习所达到的学业水平。

论文题目由教师指定或由学生提出,经教师同意确定。均应是本专业学科发展或实践中提出的理论问题和实际问题。

通过这一环节,应使学生受到有关科学研究选题,查阅、评述文献,制订研究方案,设计进行科学实验或社会调查,处理数据或整理调查结果,对结果进行分析、论证并得出结论,撰写论文等项初步训练。