spark大数据分析实战(spark大数据分析实战豆瓣)

虚拟屋 2022-12-27 09:48 编辑:admin 90阅读

1. spark大数据分析实战豆瓣

从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。

Django: Python Web应用开发框架

Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。

Diesel:基于Greenlet的事件I/O框架

Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。

Flask:一个用Python编写的轻量级Web应用框架

Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2

模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数

据库、窗体验证工具。

Cubes:轻量级Python OLAP框架

Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。

Kartograph.py

:创造矢量地图的轻量级Python框架

Kartograph是一个Python库,用来为ESRI生成SVG地图。Kartograph.py

目前仍处于beta阶段,你可以在virtualenv环境下来测试。

Pulsar:Python的事件驱动并发框架

Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。

Web2py:全栈式Web框架

Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。

Falcon:构建云API和网络应用后端的高性能Python框架

Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。

Dpark:Python版的Spark

DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。

Buildbot:基于Python的持续集成测试框架

Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。

Zerorpc:基于ZeroMQ的高性能分布式RPC框架

Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。

Bottle: 微型Python Web框架

Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。

Tornado:异步非阻塞IO的Python Web框架

Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。

webpy: 轻量级的Python Web框架

webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。

Scrapy:Python的爬虫框架

Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。

2. spark大数据分析实战公司

我们公司主要用来做离线数据分析

3. 大数据spark案例

自己写的Spark入门实战教程,适合于有一定hadoop和数据分析经验的朋友。

Spark简介

Spark是一个开源的计算框架平台,使用该平台,数据分析程序可自动分发到集群中的不同机器中,以解决大规模数据快速计算的问题,同时它还向上提供一个优雅的编程范式,使得数据分析人员通过编写类似于本机的数据分析程序即可实现集群并行计算。

Spark项目由多个紧密集成的组件组成。核心是Spark Core组件

,它实现了Spark的基本功能,包括:任务调度、内存管理、错误恢复、与存储系统交互等模块,特别的,Spark Core还定义了弹性分布式数据集(RDD)的API,是Spark内存计算与并行计算的主要编程抽象。

在Spark Core上有一系列软件栈,用于满足了各种不同数据分析计算任务需求,包括连接关系型数据库或Hadoop Hive的SQL/HQL的查询组件Spark SQL,对实时数据进行流式计算的组件Spark Steaming,支持常见机器学习算法并行计算组件MLlib,支持并行图计算组件GraphX等。

为了进一步支持在数千个计算节点上的伸缩计算,Spark Core底层支持在各种集群管理器上运行,包括Hadoop YARN、Apache Mesos,或者Spark自带的Standalone独立调度器。

Spark部署

安装Spark比较简单,只要在机器上配置好最新版JAVA环境,下载编译好的Spark软件包后即可在本地运行。当然,也可以根据具体环境,使用Maven编译需要的Spark功能。

Spark部署有两种方式,一是本地部署,二是集群部署。前者只需启动本地的交互式环境spark-shell.sh脚本即可,常用在本机快速程序测试,后者的应用场景更多些,具体根据集群环境不同,可部署在简易的Spark独立调度集群上、部署在Hadoop YARN集群上、或部署在Apache Mesos上等。

其中,Spark自带的独立调度器是最简单实现Spark集群环境的一种方式,只需在多台联网计算机上安装好Spark,然后在其中一台启动集群管理器(通过start-master.sh脚本),然后再在其他计算机上启动工作节点(通过start-slave.sh脚本),并连接到管理器上即可。

Spark编程

使用Spark编程,需要先在本机安装好Spark环境,然后启动Spark上下文管理器连接到本机(本地部署)或是集群上的集群管理器(集群部署),再使用Spark提供的抽象接口编程即可。

支持Spark的原生语言是Scala,一种支持JVM的脚本语言,可以避免其他语言在做数据转化过程的性能或信息丢失。但随着Spark项目的不断完善,使用Python和PySpark包、或者R和SparkR包进行Spark编程也都是不错的选择。

不论使用何种编程语言,使用Spark进行数据分析的关键在于掌握Spark抽象的编程范式,其基本流程包括4步:

初始化SparkContext

。SparkContext即是Spark上下文管理器(也称为驱动器程序),它主要负责向Spark工作节点上发送指令并获得计算结果,但数据分析人员无需关注具体细节,只需使用SparkContext接口编程即可。

创建RDD

。弹性分布数据集RDD是Spark在多机进行并行计算的核心数据结构,因此使用Spark进行数据分析,首先需使用SparkContext将外部数据读入到Spark集群内。

设计数据转化操作

。即操作的结果是返回一个新的RDD,即在图计算中只是一个中间节点。类比于Hadoop的Map()映射算子,但又不仅于此,Spark还支持filter()过滤算子、distinct()去重算子、sample()采样算子,以及多个RDD集合的交差补并等集合操作。

设计数据执行操作

。即操作的结果向SparkContext返回结果,或者将结果写入外部操作系统。类比于Hadoop的Reduce()算子,按某函数操作两个数据并返回一个同类型的数据,此外Spark还支持collect()直接返回结果算子、count()计数算子、take()/top()返回部分数据算子、foreach()迭代计算算子等操作。

Spark编程范式的本质是有向无环图方式的惰性计算

,即当使用上述方式进行编程后,Spark将自动将上述RDD和转化算子转换为有向无环图的数据工作流,只有当触发执行算子时,才按需进行数据工作流的计算。此外,为进一步提高计算效率,Spark默认将在内存中执行,并自动进行内存分配管理,当然分析人员也可根据需求通过persist()算子将中间步骤数据显式的将内存数据持久化到磁盘中,以方便调试或复用。

在R环境下使用Spark实例

最新版的RStudio已经较完整的集成了Spark数据分析功能,可以在SparkR官方扩展接口基础上更方便的使用Spark,主要需要安装两个包,分别是sparklyr和dplyr。其中,sparklyr包提供了更简洁易用的Spark R编程接口,dplyr包提供了一个语法可扩展的数据操作接口,支持与主流SQL/NoSQL数据库连接,同时使数据操作与数据集数据结构解耦合,并且和Spark原生算子可基本对应。

若第一次运行,先在本机安装必要的包和Spark环境:

之后运行下面的小例子,可以发现,除了需要初始化SparkContext、导入RDD数据和导出数据外,其他数据处理操作都与在本机做数据分析是一样的。

此外,除了dplyr接口外,sparklyr还封装了一套特征工程和常用机器学习算法,足以满足80%常见的数据分析与挖掘工作,至于剩余的20%定制算法或是流处理、图计算等任务,便需要了解更多高阶的Spark接口来实现了。

4. spark大数据分析实战实验

第一阶段:熟练的掌握Scala语言

1,Spark框架是采用Scala语言编写的,精致而优雅。要想成为Spark高手,你就必须阅读Spark的源代码,就必须掌握Scala,;

2,虽然说现在的Spark可以采用多语言Java、Python等进行应用程序开发,但是最快速的和支持最好的开发API依然并将永远是Scala方式的API,所以你必须掌握Scala来编写复杂的和高性能的Spark分布式程序;

3,尤其要熟练掌握Scala的trait、apply、函数式编程、泛型、逆变与协变等;

第二阶段:精通Spark平台本身提供给开发者API

1,掌握Spark中面向RDD的开发模式,掌握各种transformation和action函数的使用;

2,掌握Spark中的宽依赖和窄依赖以及lineage机制;

3,掌握RDD的计算流程,例如Stage的划分、Spark应用程序提交给集群的基本过程和Worker节点基础的工作原理等

第三阶段:深入Spark内核

此阶段主要是通过Spark框架的源码研读来深入Spark内核部分:

1,通过源码掌握Spark的任务提交过程;

2,通过源码掌握Spark集群的任务调度;

3,尤其要精通DAGScheduler、TaskScheduler和Worker节点内部的工作的每一步的细节;

第四阶级:掌握基于Spark上的核心框架的使用

Spark

作为云计算大数据时代的集大成者,在实时流处理、图技术、机器学习、NoSQL查询等方面具有显著的优势,我们使用Spark的时候大部分时间都是在使用其上的框架例如Shark、Spark Streaming等:

1, Spark Streaming是非常出色的实时流处理框架,要掌握其DStream、transformation和checkpoint等;

2, Spark的离线统计分析功能,Spark 1.0.0版本在Shark的基础上推出了Spark SQL,离线统计分析的功能的效率有显著的提升,需要重点掌握;

3,对于Spark的机器学习和GraphX等要掌握其原理和用法;

第五阶级:做商业级别的Spark项目

通过一个完整的具有代表性的Spark项目来贯穿Spark的方方面面,包括项目的架构设计、用到的技术的剖析、开发实现、运维等,完整掌握其中的每一个阶段和细节,这样就可以让您以后可以从容面对绝大多数Spark项目。

第六阶级:提供Spark解决方案

1,彻底掌握Spark框架源码的每一个细节;

2,根据不同的业务场景的需要提供Spark在不同场景的下的解决方案;

3,根据实际需要,在Spark框架基础上进行二次开发,打造自己的Spark框架。

5. Spark大数据分析实战

深圳大数据培训班哪个适合零基础学习?

深圳大数据培训班哪个适合零基础学习?到专业靠谱的千锋教育学习就对了。

零基础想要在企业中学习大数据,如果在以前你可能想都不用想,因为没有一个企业会带一个零基础技术人员,先不说成本有多大,就是投入的精力也是达不到回报的。但现在有了千锋大数据培训机构就不一样了,让你零基础也可以进入大数据行业,拥有专业的大数据技术,找到一份满意的工作。

零基础从哪儿开始学首先要根据你的基本情况而定,如果你就一小白,没有任何开发基础,也没有学过任何开发语言,那就必须先从基础java开始学起(大数据支持很多开发语言,但企业用得很多的还是JAVA),接下来学习数据结构、关系型数据库、linux系统操作,夯实基础之后,再进入大数据的学习,例如:hadoop生态系统、Storm生态系统、spark实时开发的学习,学习体系如下:

阶段一、 Java语言基础

Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类

阶段二、 HTML、CSS与JavaScript

PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生JavaScript交互功能开发、Ajax异步交互、jQuery应用

阶段三、 JavaWeb和数据库

数据库、JavaWeb开发核心、JavaWeb开发内幕

阶段四、 Linux&Hadoopt体系

Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架

阶段五、 实战(一线公司真实项目)

数据获取、数据处理、数据分析、数据展现、数据应用

阶段六、 Spark生态体系

Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)

阶段七、 Storm实时开发

storm技术架构体系、Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战

阶段八、 大数据分析 —AI(人工智能)

Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习

1、Python机器学习

2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析

若之前没有项目经验或JAVA基础,掌握了前三个阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;中间三个阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来。当然了,薪资肯定是根据自己的能力来确定的。

其实重要的是除了熟练掌握这些知识以外,还要找些相应的项目去做,不管项目大小,做过与否相差很多的!掌握扎实后可直接面对企业就业,一般薪资待遇都不会很低!

千锋深圳大数据培训班的学员之所以能够笑傲江湖,原因在于大数据培训课程科学安排课程比例,结合名企需求,只教授主流及热门的大数据技术。与亚马逊达成战略合作,国际化标准上线学员项目,让每一名大数据程序员都必须有个面试官无法拒绝的项目,从而在根本上提高就业率和学员的薪资待遇。