数据分析师具备的技能(数据分析师具备的技能和能力)

虚拟屋 2022-12-27 14:03 编辑:admin 141阅读

1. 数据分析师具备的技能和能力

1、准确、及时、全面地做好上级单位的各种统计报表。

2、写好统计分析,给各级领导提供决策的依据。

3、再好各种统计台帐,尤其是历史统计数据的台帐。

4、设计、管理各基层的原始记录,培训工人认真、仔细、及时、准确地进行原始记录。

5、完成各级领导交给的临时性任务。从理论上来说,保证统计数据的准确性是统计工作的生命,但是在实际工作中,很难做到这一点,企业和老板都想让你按他们的意思报报表,这就要看你的水平了。

2. 数据分析师具备的技能和能力有哪些

介绍下大数据工程师所需的几项关键技能:

1.大数据架构的工具与组件 数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。

2.深入了解SQL和其它数据库解决方案 数据工程师需要熟悉数据库管理系统,深入了解SQL至关重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。

3.数据仓库和ETL工具 数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。此外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。

4.基于Hadoop的分析(HBase,Hive,MapReduce等) 对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。

5.编码 说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。

6.机器学习 机器学习已经成为标准数据科学,该领域的知识可以帮我们构建同类产品的解决方案。这种知识还有一个好处,就是让你在这个领域极具市场价值,因为在这种情况下能够“戴上两顶帽子”会让你成为一个更强大的工具。

7.多种操作系统 最后,需要我们对Unix,Linux和Solaris系统有深入了解,许多数学工具基于这些操作系统,因为它们有Windows和Mac系统功能没有的访问权限和特殊硬件需求。

3. 数据分析师要具备哪些技能

数据分析师认证 国家部委(工信部教育与考试中心)颁发的有:

a,《数据分析师职业技术证书》(此证书是CPDA数据分析师通过后颁发)

b,《大数据分析师专项技术证书》(此证书很多单位都在进行认证工作) 正规协会组织颁发的有:

a,《CPDA数据分析师证书》(由中国商业联合的数据分析专委会颁发,也是国内最早的数据分析类认证项目)

b,《BDA大数据分析师证书》(由中商统会颁发,前身为统计师证书,后变更为数据分析类证书项目) 企业颁发的证书有:

a,实力大厂颁发的证书 阿里,腾讯等。

b,细分行业领头企业颁发的证书 帆软,永洪,八爪鱼等。 其他。“一些海外协会”“合资协会”“某些逐利培训机构”“某些原论坛”等颁发的证书。 具体还需要学员自己辨别。

其中,第一,第二,第三类都可以根据自己的学习意愿进行选择性的考取,其中,企业颁发的证书还需要注意企业存续的时间,有可能会出现证书考下来,但企业倒闭的情况。

第四类建议谨慎。

4. 数据分析师的基本技能

,先mark下,关于金融行业的情况我找时间写。

目前从事金融大数据相关工作,下面的情况仅限本行业;就接触的情况来看,数据分析这一邻域大概就是这几部分的岗位为主:bi工程师,数据分析师,数据挖掘工程师,建模(算法)工程师,人工智能方向。各岗位异同其他答主已经说的很明白了,就不再说了。 但实际上各岗位间并没有太过明显的界限,例如数据分析师也(掌握sql,R,统计等知识)完全有可能向bi工程师或数据挖掘方向发展,只是技能的侧重不同而已。 数据分析师需求较大,尤其对于较大型的公司,从总部各部门到分公司甚至营业部都可能会配备自己的数据分析师,工作一般以数据查询及完成报告为主,技能侧重于ppt,sql。这类分析师的能力差异主要体现在行业经验及业务理解上。其他岗位包括数据挖掘,建模等岗位主要在集中公司总部,岗位数量上会少于数据分析,编程技能及统计知识要求会更高,往往对相关数据挖掘项目经验也有要求。 关于数据分析师的前景,在未来几年应该还是十分吃香的,但更长远来看就未必像其他答主描绘的那么美好;目前数据分析师吃香很大程度上是由于近几年各种数据相关的概念相继出现,导致数据分析师仍供不应求,但这种供需情况终会达到平衡,红利会逐渐消失。 另外,就目前情况来看,数据分析师入门难度相比很多行业并不算高,不像当医生的需要有医学背景,律师/工程师则要求相关从业资格。我认为,简单的sql查询在不久的未来将会成为一种通用技能,就类似现在office三件套的存在,到那时候简单的数据处理工作就不需要招聘专门的数据分析师了。 所以就长远来看,若想在行业内保持竞争力,要不在就业务方向积累经验建立起自己的壁垒,要么在技术方面有所建树。若留在原地的话,涨潮的时候可是会淹死的哦~~

5. 数据分析师具备的技能和能力要求

数据分析师认证 国家部委(工信部教育与考试中心)颁发的有:

a,《数据分析师职业技术证书》(此证书是CPDA数据分析师通过后颁发)

b,《大数据分析师专项技术证书》(此证书很多单位都在进行认证工作) 正规协会组织颁发的有:

a,《CPDA数据分析师证书》(由中国商业联合的数据分析专委会颁发,也是国内最早的数据分析类认证项目)

b,《BDA大数据分析师证书》(由中商统会颁发,前身为统计师证书,后变更为数据分析类证书项目) 企业颁发的证书有:

a,实力大厂颁发的证书 阿里,腾讯等。

b,细分行业领头企业颁发的证书 帆软,永洪,八爪鱼等。 其他。“一些海外协会”“合资协会”“某些逐利培训机构”“某些原论坛”等颁发的证书。 具体还需要学员自己辨别。

其中,第一,第二,第三类都可以根据自己的学习意愿进行选择性的考取,其中,企业颁发的证书还需要注意企业存续的时间,有可能会出现证书考下来,但企业倒闭的情况。

第四类建议谨慎。

6. 数据分析师应具备什么能力

  大数据需要以下六类人才:  

一、大数据系统研发工程师。  这一专业人才负责大数据系统研发,包括大规模非结构化数据业务模型构建、大数据存储、数据库构设、优化数据库构架、解决数据库中心设计等,同时,还要负责数据集群的日常运作和系统的监测等,这一类人才是任何构设大数据系统的机构都必须的。  

二、大数据应用开发工程师。  此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapReduce,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。  

三、大数据分析师。  此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是最抢手的大数据人才,他们所从事的是热门的分析师工作。  

四、数据可视化工程师。  此类人才负责在收集到的高质量数据中,利用图形化的工具及手段的应用,清楚地揭示数据中的复杂信息,帮助用户更好地进行大数据应用开发,如果能使用新型数据可视化工具如Spotifre,Qlikview和Tableau,那么,就成为很受欢迎的人才。  

五、数据安全研发人才。  此类人才主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施,而对于数据安全方面的具体技术的人才就更需要了,如果数据安全技术,同时又具有较强的管理经验,能有效地保证大数据构设和应用单位的数据安全,那就是抢手的人才。  六、数据科学研究人才。  数据科学研究是一个全新的工作,够将单位、企业的数据和技术转化为有用的商业价值,随着大数据时代的到来,越来越多的工作、事务直接涉及或针对数据,这就需要有数据科学方面的研究专家来进行研究,通过研究,他们能将数据分析结果解释给IT部门和业务部门管理者听,数据科学专家是联通海量数据和管理者之间的桥梁,需要有数据专业、分析师能力和管理者的知识,这也是抢手的人才。

7. 数据分析师具备的技能和能力怎么写

展开全部

说实话,入门数据分析师行业并不难,但想竞争到较好的岗位就不太容易了。除了要有过硬的数据技能和扎实的实操能力,高情商更是不可或缺,此外还得具备流畅的沟通和表达能力,才能在芸芸众生之中脱颖而出。不过这些终究还是得不断磨练和成长,才能逐渐优秀和熟悉起来。对于数据分析师这个职位,你算是小白出身,做好自己的职业规划,可以让我们在职场中更加得心应手,不至于真正面临问题的时候束手无策。

做好职业规划,让自己的数据分析师之路走得更顺。

1、要知道,技术永远都是只是一种客观手段和谋生工具,产生价值、凸显价值才是王道。这里面涉及到诸多的自身能力需要不断磨练,比如个人的意志力、沟通能力、表述能力,还有你得好奇心、创造力和影响力等等。这些都是可以让你逐渐成长为一个优秀的数据分析师的重要素质。要去make the change and influence,不只停留在数字展示。

2、笨鸟先飞,拥有一个好的身体会使你能量倍增。初入职场,肯定事事要虚心向学求教,对于领导的指派任务,我们一定要高效完成,加班加点在所难免。职场里面那些充满能量、新鲜项目感兴趣、滔滔不绝做presentation的人通常都是有着很好的生活习惯、处理事情很快,吸收知识很快、愿意学习了解新事物,坚持锻炼的人。这个法则适用于大多职场。拼到后面其实是持久的耐力,就是不松懈,坚持对的事情。

3、别钻牛角尖,要灵活。如果一种方法试了好久都不行,停下来,问一问,试一试别的,可能会有新的出路。职场不是一个学术的地方。我们要认真做事,但是不要追着一个小的问题不放,这样很容易丢失掉大的东西, 负责任地讲,有很多项目是半途而废的,有很多数字不是准确的,我们要做的是顺势而为,抓住重点。Always focus on big picture.

4、先做倾听者,再做思考者,然后做好的提问者,最后做实现者。这里每一个环节都重要,先知道别人关心的是什么,有什么问题,然后要系统性考虑,有时候不要着急解决小问题,Focus on big picture,此外,提问出关键问题甚至能够帮助stakeholder更清楚了解他要的是什么,最后搞清楚了这些之后就是Action。

5、有意识地去跟人交流,特别是业务相关人员,以及各个条线的stakeholder,如果仅仅利用必要的时间,比如开会的时候交流彼此对业务对分析的看法,通常是不够的。我们作为分析人员,最好要走在前面,试探性的问问题,交流想法。提升自己举例子的能力,把复杂的东西通过简单的描述让别人理解很重要。

6、不停的总结,迭代。其实数据分析里面的分支学科还是很多的,ETL, Data Cleansing, 一些基本分析模型,Data visualization等等,不管是自己做过的项目经验,还是网上看来得好文章,或者同行交流来的新的好的内容,都可以不停的总结,试用,反馈,以此循环。长期来看是非常有好处的并且容易形成自己的体系。