1. 数据挖掘的问题
采用数据挖掘方法作分析后,对于问题(客户识别等)判断效率的提升幅度。
如,贷款客户的违约率为2%,你用数据挖掘方法建立了一个预测贷款客户将来违约可能性的模型,用这个模型将客户进行评分后,违约可能性最高的10%的客户中,实际违约客户占了50%,说明你所建立的模型对于这一部分客户识别的提升率是25(50%是2%的25倍),你只要做好这10%的客户的贷后管理,就能够避免50%违约客户的损失,比起你毫无目的地对所有贷款客户进行贷后管理效率要高得多。
2. 数据挖掘问题论文4000字
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用 数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
3. 数据挖掘问题分类
归纳起来可以按照以下方式进行分类:
(1)从大数据处理的过程来分:包括数据存储、数据挖掘分析、以及为完成高效分析挖掘而设计的计算平台,它们完成数据采集、ETL、存储、结构化处理、挖掘、 分析、预测、应用等功能。
(2)从大数据处理的数据类型来划分:可以分为针对关系型数据、非关系型数据(图数据、文本数据、网络型数据等)、半结构化数据、混合类型数据处理的技术平台。
(3)从大数据处理的方式来划分:可以分为批量处理、实时处理、综合处理。其中批量数据是对成批数据进行一次性处理,而实时处理(流处理)对处理的延时有严格的要求,综合处理是指同时具备批量处理和实时处理两种方式。
(4)从平台对数据的部署方式看:可以分为基于内存的、基于磁盘的。前者在分布式系统内部的数据交换是在内存中进行,后者则是通过磁盘文件的方式
4. 数据挖掘的问题类型
数据挖掘起源于多种学科,其中最重要的是统计学和机器学习。统计学起源于数学其强调的是数学的精确性;机器学习主要起源于计算机实践其更倾向于实践,主动检测某个东西,来确定它的表现形式。
5. 数据挖掘问题与解决方法
要数据挖掘
(1) 数据收集和数据存储技术的快速进步使得各组织机构积累了海量数据。然而提取有用的信息已经成为巨大的挑战。
(2)由于数据量太大,已经无法使用传统的分析工具和技术处理它们。
(3)即使数据集相对较小,但由于数据本身具有一些非传统特点,也不能使用传统的方法进行处理。
6. 数据挖掘问题描述
这个专业从总体上看还是比较好就业的。随着社会发展,各种信息犹如火山爆发一般能量巨大,为了应对工作和生活需要,此时信息检索与数据挖掘专业就显得非常重要,可以极大地提高工作效率,实现信息利用目的,随着形势发展,这方面人才需求猛增,相信你会被就业市场看好的。
7. 数据挖掘的问题模型
OLAP与数据挖掘DM具有本质区别
(1)功能不同
数据挖掘DM的功能在于知识发现KDD。如:数据挖掘DM中的“分类”包括:贝叶斯分类、粗糙集分类、决策树分类等,是从数据中发现知识规则,是“透过现象看本质”;
而联机分析OLAP的功能在于“统计”和统计结果的展示,是“现象”和“表象”,不能实现数据挖掘DM的知识发现KDD功能。
(2)数据组成不同
数据挖是从混沌的、具有巨大噪声的数据中提炼知识规则;
而联机分析OLAP只是从已经规范化的、纯净的关系数据库中组织数据。
(3)知识与数据的关系不同
数据挖掘DM是从数据中发现知识KDD;
而联机分析OLAP是利用人已知的知识来有意识地组织和使用数据。
(4)基本方法不同
数据挖掘的基础是数学模型和算法;
而OLAP不需要数学模型和算法支持,只与数据仓库和OLAP自身知识相关。
8. 数据挖掘问题背景
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。
(1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。
(2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
9. 数据挖掘的问题与改进
数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。 自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。 自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。 他们之间的关系如下: 机器学习比较偏底层,也比较偏理论,机器学习本身不够炫酷,结合了具体的自然语言处理以及数据挖掘的问题才能炫酷。 机器学习好像内力一 样,是一个武者的基础,而自然语言和数据挖掘的东西都是招式。如果你内功足够深厚,招式对你来说都是小意思。但机器学习同时也要求很高的数学基础。 这三项并不是独立的选项,机器学习需要数据挖掘和自然语处理的支撑,自然语处理需要数据挖掘的支撑,数据挖掘需要大数据的支撑。最终所有的根源 都要落实在大数据上,而这一切的顶点就是人工智能。