大数据与数据挖掘技术研究(大数据及数据挖掘)

虚拟屋 2022-12-16 08:14 编辑:admin 294阅读

1. 大数据及数据挖掘

在美国,计算机专业是理工学科中就业好、薪资高的专业之一。

在2016年PayScale美国专业薪水排名中,计算机科学、计算机工程等相关专业名列前茅。美国劳工部公布的数据显示,计算机行业在美国的平均薪资超过7万美元。美国大学尤其是如 Carnegie Mellon, MIT, Stanford 等名校都开设有计算机科学系,而且已经把这个专业的领域分得很细,而且该专业的科研经费也是十分充足。

2. 大数据挖掘

掌握教育实战经验中的具体数据

3. 大数据及数据挖掘专业

院校排名有厦门大学,投档线658分。

华东师范大学投档线657分。

上海财经大学投档线657分。

吉林大学投档分642分。

东华大学投档线639分,南京理工大学投档线639分。

华中师范大学投档线639分。

上海对外经贸大学投档线635分。中国地质大学投档线634分。等等

4. 大数据数据挖掘文献综述

  文献综述格式  文献综述要求介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。  前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。  主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可以按不同的问题进行综述,还可以按不同的观点进行比较综述,不管用哪一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。  总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。  参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。  文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。  文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。  要求同学们学写综述,至少有以下好处:①通过搜集文献资料过程,可进一步熟悉医学文献的查找方法和资料的积累方法;在查找的过程中同时也扩大了知识面;②查找文献资料、写文献综述是临床科研选题及进行临床科研的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程;③通过综述的写作过程,能提高归纳、分析、综合能力,有利于独立工作能力和科研能力的提高;④文献综述选题范围广,题目可大可小,可难可易,可根据自己的能力和兴趣自由选题。  文献综述与"读书报告"、"文献复习"、"研究进展"等有相似的地方,它们都是从某一方面的专题研究论文或报告中归纳出来的。但是,文献综述既不象"读书报告"、"文献复习"那样,单纯把一级文献客观地归纳报告,也不象"研究进展"那样只讲科学进程,其特点是"综","综"是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;"述"就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。  写文献综述一般经过以下几个阶段:即选题,搜集阅读文献资料、拟定提纲(包括归纳、整理、分析)和成文。  一、选题和搜集阅读文献  撰写文献综述通常出于某种需要,如为某学术会议的专题、从事某项科研、为某方面积累文献资料等等,所以,文献综述的选题,作者一般是明确的,不象科研课题选题那么困难。文献综述选题范围广,题目可大可小,大到一个领域、一个学科,小到一种疾病、一个方法、一个理论,可根据自己的需要而定,初次撰写文献综述,特别是实习同学所选题目宜小些,这样查阅文献的数量相对较小,撰写时易于归纳整理,否则,题目选得过大,查阅文献花费的时间太多,影响实习,而且归纳整理困难,最后写出的综述大题小作或是文不对题。  选定题目后,则要围绕题目进行搜集与文题有关的文献。关于搜集文献的有关方法,前面的有关章节已经介绍,如看专著、年鉴法、浏览法、滚雪球法、检索法等等,在此不再重复。搜集文献要求越全越好,因而最常用的方法是用检索法。搜集好与文题有关的参考文献后,就要对这些参考文献进行阅读、归纳、整理,如何从这些文献中选出具有代表性、科学性和可靠性大的单篇研究文献十分重要,从某种意义上讲,所阅读和选择的文献的质量高低,直接影响文献综述的水平。因此在阅读文献时,要写好"读书笔记"、"读书心得"和做好"文献摘录卡片"。有自己的语言写下阅读时得到的启示、体会和想法,将文献的精髓摘录下来,不仅为撰写综述时提供有用的资料,而且对于训练自己的表达能力,阅读水平都有好处,特别是将文献整理成文献摘录卡片,对撰写综述极为有利。  二、格式与写法  文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。  前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。  主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。  总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。  参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。  三、注意事项  由于文献综述的特点,致使它的写作既不同于"读书笔记""读书报告",也不同于一般的科研论文。因此,在撰写文献综述时应注意以下几个问题:  ⒈搜集文献应尽量全。掌握全面、大量的文献资料是写好综述的前提,否则,随便搜集一点资料就动手撰写是不可能写出好多综述的,甚至写出的文章根本不成为综述。  ⒉注意引用文献的代表性、可靠性和科学性。在搜集到的文献中可能出现观点雷同,有的文献在可靠性及科学性方面存在着差异,因此在引用文献时应注意选用代表性、可靠性和科学性较好的文献。  ⒊引用文献要忠实文献内容。由于文献综述有作者自己的评论分析,因此在撰写时应分清作者的观点和文献的内容,不能篡改文献的内容。  ⒋参考文献不能省略。有的科研论文可以将参考文献省略,但文献综述绝对不能省略,而且应是文中引用过的,能反映主题全貌的并且是作者直接阅读过的文献资料。  总之,一篇好的文献综述,应有较完整的文献资料,有评论分析,并能准确地反映主题内容。

5. 大数据数据挖掘案例

大数据科技股份有限公司是一家基于大数据挖掘分析技术的数据驱动型综合资讯服务机构。

大数据定位为一家基于大数据挖掘分析技术的数据驱动型综合资讯服务机构,致力于做政府、企业乃至个人的领导者管理工具。

大数据主要产品有政务大数据方面《工商大数据平台》《中国教育大数据平台》《食药大数据平台》《智库大数据平台》《品牌口碑研究大数据平台》等9个以上大数据平台。

首页大数据拥有五大基础技术能力:系统计算技术、大数据软件技术、大数据分析技术、大数据平台建设、大数据安全技术。

6. 大数据数据挖掘分析师

分析工程师不太清楚,数据挖掘主要是通过模型的方式对用户产生的数据进行深层次的分析,例如用户的属性可能宽度不够,那么通过用户的性别、年龄、职业三个主要项,结合例如k-means算法等便可判定用户的大致属性,对于企业指导运营等有着锦上添花的作用。

7. 大数据数据挖掘区别

大数据处理的信息很大,往往一个分析所需的数据分别存储在数百个服务器中,因此大数据分析就需要协调所需服务器,让他们按照我们分析的需要进行配合运作,这是他和传统统计分析的主要不同,在具体方法上,大数据还可能用到数据挖掘的方法,传统分析法往往事先有个分析目标然后用统计的方法验证,数据挖掘是通过算法,用计算机分析数据,让计算机发现数据之间的联系。两者大体如此,如果要详细了解,可以参考相关书籍

8. 大数据及数据挖掘方法研究论文

大数据论文数据挖掘方面的题好

本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多

9. 大数据及数据挖掘方向

从事大数据方向,大学本科学数据科学与大数据技术或大数据管理与应用专业比较好。

数据科学与大数据技术专业,旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。大数据技术的意义不在于掌握庞大的数据信息,而在于对这些数据进行专业化处理,通过‘加工’实现数据的‘增值’。

数据科学与大数据技术是个交叉性很强的专业,很难说完全归属于哪个独立的学科。所以,不同的学校有的是信息学院申报,有的是计算机学院牵头申报,有的设在统计学院,还有的在经管学院。

培养目标

培养具备基于计算机技术、自动控制技术、智能系统方法、传感信息处理等科学与技术,进行信息获取、传输、处理、优化、控制、组织等并完成系统集成的,具有相应工程实施能力,具备在相应领域从事智能技术与工程的科研、开发、管理工作的、具有宽口径知识和较强适应能力及现代科学创新意识的高级技术人才。

培养要求

掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。

主干课程

C程序设计、数据结构、数据库原理与应用、计算机操作系统、计算机网络、Java语言程序设计、Python语言程序设计,大数据算法、人工智能、应用统计(统计学)、大数据机器学习、数据建模、大数据平台核心技术、大数据分析与处理,大数据管理、大数据实践等课程。

开设大数据专业院校

北京大学、对外经济贸易大学、中南大学、中国人民大学、北京邮电大学、复旦大学、华东师范大学、电子科技大学、、长春理工大学、浙江财经大学、重庆理工大学、贵州大学、昆明理工大学、云南师范大学、中国农业大学、武汉理工大学、兰州大学、天津财经大学、河北农业大学、太原理工大学、内蒙古工业大学、辽宁大学、郑州大学西亚斯学院等。

数据科学与大数据技术专业可以从事的工作有哪些?

重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类,热门岗位有:

1、大数据系统架构师

大数据平台搭建、系统设计、基础设施。

技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。

2、大数据系统分析师

面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。

技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。

3、hadoop开发工程师。

解决大数据存储问题。

4、数据分析师

不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

作为一名数据分析师,至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。

5、数据挖掘工程师 做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。 6、大数据可视化工程师 随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。

大数据可视化工程师岗位职责:

1)依据产品业务功能,设计符合需求的可视化方案。

2)依据可视化场景不同及性能要求,选择合适的可视化技术。

3)依据方案和技术选型制作可视化样例。

4)配合视觉设计人员完善可视化样例。

5)配合前端开发人员将样例组件化。

大数据管理与应用专业

大数据管理与应用专业以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。

该专业旨在培养掌握管理学基本理论,熟悉现代信息管理技术与方法,善于利用商务数据去定量化分析,并能最终实现智能化商业决策的综合型人才。本专业将坚持“厚基础、宽知识、重思想、重创新、重实战”的培养理念,采取因材施教的模式,采用全新的课程教学体系,培养具有国际视野、创新意识、创新能力及领导潜质的高级管理人才。

主要专业方向有:商务数据分析、商务智能、电子健康、大数据金融、数据挖掘、大数据管理与治理等。

在专业教育课程的设置中,分为专业基础课、专业核心课和专业选修课三部分。专业基础课主要包括经济管理理论、数理基础和计算机基础等方面的课程,这是通识教育的厚基础部分;专业核心课包括数据库和数据分析方法类课程,着重培养学生的数据获取能力以及对结构化、半结构化和非结构化数据的处理与分析能力;在专业选修课部分,学生可根据自身职业发展预期,自主选择相关课程。

该专业的毕业生可以选择继续读研、去国外深造或直接就业。优秀本科毕业生有机会获得保送研究生的资格。就业行业包括航空航天、互联网、金融、通信等。毕业生可以在相关部门从事信息管理、数据分析、业务流程优化、商务智能决策和互联网智能化等工作。

西安交通大学、哈尔滨工业大学、东北财经大学、南京财经大学、贵州财经大学五所院校作为第一批设立大数据管理与应用专业的院校,于2018年秋季开始招生。

大数据专业前景

随着移动互联网和智能终端的普及,信息技术与经济社会的交汇融合,引发了数据迅猛增长。新摩尔定律认为,人类有史以来的数据总量,每过18个月就会翻一番,而海量的数据蕴含着巨大生产力和商机。

我国大数据处于起步阶段,每年均增长在20%以上。2015年,大数据市场规模已达到98.9亿元。2016年增速达到45%,超过160亿元。预计2020年,我国大数据市场规模将超过8000亿元,有望成世界第一数据资源大国。中国商业联合会数据分析专业委员会资料显示,未来3至5年,中国需要180万数据人才,但截至目前,中国大数据从业人员只有约30万人。

在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万—50万。

以上种种,无不揭示着大数据未来发展的大好前景!时不我待,抓住机遇!

报考指南

数据科学与大数据技术是个交叉性强、跨学科的专业,很难说是完全归属与那个独立的学科。

有志于学习数据科学与大数据技术专业的学生,可以从大学的传统优势领域和行业背景考虑选择。比如,复旦大学的大数据技术本科专业是设在大数据学院下;北京大学是在数学院开设了该专业,偏数学的内容更多一些。对外经济贸易大学该专业设在信息学院,因为财经是学校传统优势,专业还会偏重经济、金融等相关学科领域的知识。

值得注意的是,数据科学与大数据技术只招理科生,但女生的比例并不低。

在此温馨提示:选择专业时一定要结合自己的兴趣爱好、学科成绩,未来的职业发展、深造情况、就业方向等多方面的因素综合考虑。

10. 大数据数据挖掘培训

和你需要安排的课程有关一般的五个月,我是在魔据学的,说实话其实大数据本身就是有点难度的,需要慢慢学一段时间理解了就好了,希望对你有帮助。