大数据数据挖掘算法研究与应用研究(大数据数据挖掘算法研究与应用研究课题)

虚拟屋 2022-12-19 00:11 编辑:admin 298阅读

1. 大数据数据挖掘算法研究与应用研究课题

数字科学与大数据技术主要从事大数据技术、大数据研究、数据管理、数据挖掘、算法工程、应用开发等工作。

数据科学与大数据技术专业需要掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。

数据科学与大数据技术专业学生毕业生能在政府机构、企业、公司等从事大数据管理、研究、应用开发等方面的工作。同时可以考取软件工程、计算机科学与技术、应用统计学等专业的研究生或出国深造。

2. 数据挖掘的应用研究

  数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。

  数据挖掘涉及的学科领域和技术很多,有多种分类法。

  (1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。

  (2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。

3. 大数据挖掘方法研究

①基于大量数据

并不是说在小数据上不可进行数据挖掘,实际上大多数的算法均可在小数据上运行并得到结果。只不过,小数据量完全可以通过人工分析来总结规律,再者,小数据量在大多数情况下是无法反映出普遍性的。

②非平凡性

所谓非平凡,指的是挖掘出来的知识绝非那么简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。

③隐含性

数据挖掘的意义就是要深层次挖掘隐藏在数据内部的知识,而不仅仅是浮现在数据表面的信息。其中常用的BI工具,如报表和OLAP是完全可以让用户找出相关信息的。

④新奇性

经过数据挖掘出来的知识应该是以前未知的,因为只有全新的知识,才可以帮助企业获得进一步的洞察力。

⑤价值性

数据挖掘出来的结果必须是能给企业带来直接的或间接的效益。虽然有时候,在一些数据挖掘项目中,或因缺乏明确的业务目标,或因数据质量的不足,或因挖掘人员的经验不足等因素,均会导致挖掘效果不佳或者说完全没有效果。但那仅仅只是一部分,依旧有大量的成功案例在不断证明着数据挖掘是的确可以变成提升效益的利器的。

好了,有关数据挖掘技术具有哪些特点的内容分享到此就结束了,想要了解更多数据分析,数据挖掘等相关内容,可查阅本站其他内容,希望对大家能有所帮助

4. 大数据数据挖掘算法研究与应用研究课题有哪些

应用统计专业一般指硕士专业,属专硕,一般是没有本科专业的。本科专业一般只有统计学或生物医学统计,后者最接近应用统计范畴。

但人大很特别,统计学院本科专业就有四个:统计学,应用统计,数据科学与技术,经济统计。这四个专业其实只有统计学和数据科学与技术是一级学科,应用统计(保险精算)与经济统计都属于应用统计范畴,是二级学科。硕士专业是没有数据科学与技术专业的,所以一般只有统计学硕博,再就是应用统计硕士,按实际应用领域分很多方面。人大的应用统计专硕有两个方向一是风险管理与精算,一是大数据分析。其它应用统计方向是学硕如:流行病与卫生统计,概率论与数理统计,风险管理与精算学。感觉很复杂比较乱,没有南开大学简单明了。

应用统计专硕有很多方向:经济与社会统计,生物统计,流行病与卫生统计,大数据处理与分析等这几个方向。目前最热门应用统计方向就是大数据。

应用统计大数据硕士课程不同学校有不同,但基本大同小异,我以南开大学和人民大学开设主要课程来说明:

南开大学应用统计主要学习:《动态数据分析》,《大数据统计学基础》,《数据采集方法》,《统计计算》,《统计案例实务》,《数据挖掘与应用》,《统计学习》,《应用多元统计》等,基本都是大数据处理与分析实务需要的知识;

人民大学应用统计主要学习:《大数据计算机基础》,《大数据分布式计算》,《大数据统计基础》,《大数据挖掘与机器学习》,《非结构化大数据分析》,《大数据案例》等六门。人大课程偏重计算机知识的导入,其他与南开大学相似,名称大同小异而已。

5. 大数据技术及数据挖掘论文

1、大数据的发展历程

2008年被《自然》杂志专刊提出了BigData概念

萌芽阶段:

20世纪90年代到21世纪的样子,数据库技术成熟,数据挖掘理论成熟,也称数据挖掘阶段。

突破阶段:

2003——2006年,非结构化的数据大量出现,传统的数据库处理难以应对,也称非结构化数据阶段。

成熟阶段:

2006——2009年,谷歌公开发表两篇论文《谷歌文件系统》和《基于集群的简单数据处理:MapReduce》,其核心的技术包括分布式文件系统GFS,分布式计算系统框架MapReduce,分布式锁Chubby,及分布式数据库BigTable,这期间大数据研究的焦点是性能,云计算,大规模的数据集并行运算算法,以及开源分布式架构(Hadoop)

应用阶段:

2009年至今,大数据基础技术成熟之后,学术界及及企业界纷纷开始转向应用研究,2013年大数据技术开始向商业、科技、医疗、政府、教育、经济、交通、物流及社会的各个领域渗透,因此2013年也被称为大数据元年。

6. 数据挖掘的课题

可以选择你自己的身边的故事,以小见大,从小的地方看大的地方,挖掘更深入的东西,这样的选题比较容易吸引人。

7. 大数据分析课题

想要进入到大数据行业中,成为其中的一员,那么我们就要了解大数据行业和大数据的相关技术,以及必要的时候进行大数据的培训学习,一遍快速的掌握相关大数据的技术。这有很好的掌握了大数据技术才有可能进入到大数据这个行业中。

在选择大数据培训学习之前首先我们要了解要学习的大数据内容有哪些,一遍大数据培训中更好的进行学习。

第一,我们在了解了大数据技术后都会知道,大数据培训学习首要的就是了解Java语言和Linux操作系统,这两个是学习大数据的基础,也是大数据培训课程的必要内容。Java :只要了解学习一些基础知识就可以,做大数据不需要去太深入的学习Java 技术,学javaSE 就的相关知识就可以了,这也是相当于学习大数据的基础知识。 Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,Linux知识在许多编程语言中都用的到,多少都是要进行学习的,而且Linux学习对于大数据有很大的帮助。最后就是大数据培训内容的核心大数据技术知识hadoop、hive、hbase、spark等大数据相关技术的学习和应用以及相关项目的操作学习。

8. 大数据分析挖掘技术研究

是将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术相结合的“互联网+”前沿科技专业。

本专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。

9. 大数据数据挖掘算法研究与应用研究课题选题

本书是国内绝大多数高校采用的知名教材《云计算》(1-3版)的姊妹篇,是中国大数据专家委员会刘鹏教授联合国内多位专家历时两年的心血之作。大数据领域一直缺乏一本权威教材,希望本书能够填补空白。[1]

本书系统地介绍了大数据的理论知识和实战应用,包括大数据采集与预处理、数据挖掘算法和工具和大数据可视化等,并深度剖析了大数据在互联网、商业和典型行业的应用

10. 大数据分析与数据挖掘技术

毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作