1. 挖掘数据背后的价值
数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的原始数据中,提取隐含的、人们事先未知的、但又潜在有用的信息和知识的非平凡过程。
数据挖掘是一门涉及面很广的交叉学科,包括计算智能、机器学习、模式识别、信息检索、数理统计、数据库等相关技术,在商务管理、生产控制、市场分析、科学探索等许多领域具有广泛的应用价值。
20世纪90年代,随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段;
即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据;
并且数据量也越来越大。数据库在给我们提供丰富信息的同时,也体现出明显的海量信息特征。
信息爆炸时代,海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼,过多无用的信息必然会产生信息距离和有用知识的丢失。
因此,人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据。
但仅以数据库系统的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,更缺乏挖掘数据背后隐藏知识的手段。
正是在这样的条件下,数据挖掘技术应运而生。
2. 数据分析与挖掘意义
客户资源挖掘潜力客户,策划成本价格,中间环节好
3. 挖掘数据的潜在价值
载货重量,载货方数,重量方数比多少?
4. 数据挖掘的价值有哪些
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘对象
1.数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。
2.数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。
3.发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。
数据挖掘步骤
在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊地实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步地进行数据挖掘工作。比如,SPSS公司的5A和SAS公司的SEMMA。
数据挖掘过程模型步骤主要包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。下面让我们来具体看一下每个步骤的具体内容:
(1)定义问题。在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。
(2)建立数据挖掘库。建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
(3)分析数据。分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
(4)准备数据。这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
(5)建立模型。建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。
(6)评价模型。模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。
(7)实施。模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。
5. 数据价值挖掘的应用现状与发展
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流也越来越密切,生活也越来越便捷,然而大数据就是这个高科技时代的产物。阿里巴巴创办人马云曾经说过,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,这显示出大数据对于阿里巴巴集团来说是举足轻重的。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在于“大”,而在于“有用”。数据的价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据,发掘其潜在价值,才是赢得核心竞争力的关键。
研究大数据,最重要的意义是预测。因为数据从根本上讲,是对过去和现在的归纳和总结,其本身不具备趋势和方向性的特征,但是我们可以应用大数据去了解事物发展的客观规律、了解人类行为,并且能够帮助我们改变过去的思维方式,建立新的数据思维模型,从而对未来进行预测和推测。比如,商业公司对消费者日常的购买行为和使用商品习惯进行汇总和分析,了解到消费者的需求,从而改进已有商品并适时推出新的商品,消费者的购买欲将会提高。知名互联网公司谷歌对其用户每天频繁搜索的词汇进行数据挖掘,从而进行相关的广告推广和商业研究。
大数据的处理技术迫在眉睫,近年来各国政府和全球学术界都掀起了一场大数据技术的革命,众人纷纷积极研究大数据的相关技术。很多国家都把大数据技术研究上升到了国家战略高度,提出了一系列的大数据技术研发计划,从而推动政府机构、学术界、相关行业和各类企业对大数据技术进行探索和研究。
可以说大数据是一种宝贵的战略资源,其潜在价值和增长速度正在改变着人类的工作、生活和思维方式。可以想象,在未来,各行各业都会积极拥抱大数据,积极探索数据挖掘和分析的新技术、新方法,从而更好地利用大数据。当然,大数据并不能主宰一切。大数据虽然能够发现“是什么”,却不能说明“为什么”;大数据提供的是一些描述性的信息,而创新还是需要人类自己来实现。
6. 挖掘数据背后的价值是什么
什么是数据分析
数据分析已经称为当下热词,但绝不仅仅只是Excel绘制几个图表、Python生成几个图片那么简单,更多的是对数据内在价值的探索。举个最简单的例子:你喜欢上一个陌生女孩,但你们没有太多交集,这时候你通过微信、QQ、微博等等交友软件四处寻找和她有关信息,并且通过她的着装、她的出没时间猜测出了她的职业与上下班大致分布情况,你通过询问熟人拿到了联系方式,并且打听到了她的喜好,成功的制造了多次偶遇和邂逅,最后有情人终成眷属.... 文中的你就是采用了合理的“分析手段”,对拿到的女孩“出没时间”、“习惯”等数据分析出了她的日常作息、喜好等等,你拿捏住她的喜好不断分析和预测她的下一次出没地、她是否同意等等...
有什么用
虽然是个很粗糙的例子,但也确实反映出了数据分析的内在:对业务数据,通过你的思维拆分成不同需求并通过工具挖掘数据内在价值,做出合理预测,这就是所谓的数据分析了。数据分析的目的是把隐没在一大批看来杂乱无章的数据中的信息集中、萃取和提炼出来,以找出所研究对象的内在规律。在实用中,数据分析可帮助人们作出判断,以便采取适当行动,同时数据分析也是组织有目的地收集数据、分析数据,使之成为信息的过程。
7. 挖掘数据背后的意义
岗位是比较不错的,无论是在甲方还是在乙方,这个岗位都是比较瞩目的,在甲方公司的话一定要吃透业务,如果自己有追求不想论日子的话还是需要自己努力加油的,当然在甲方想要晋升除了能力之外就是处变能力,一定程度上说后者可能更重要;如果在乙方的话那就是实打实的要靠能力吃饭了,一般来说在乙方能学到更扎实、更时髦的技术,确实是能提高你的技术能力的。
要说到哪个公司靠谱的话,我觉得移动和电信都还不错,移动呢要稍微辛苦点,电信么稍微轻松点,这是相对而言啊,可能各省份或地市也有差别,乙方的话国内的华为,国外的sap、oracle、emc都还不错,像国内的ibm、hp这样的老牌个人感觉失去了企业文化,被潮流推着走。以上为一家之言,供你参考,有问题再追问。
8. 挖掘数据背后的价值的做法
“所谓‘小数据’,并不是因为数据量小,而是通过海量数据分析找出真正能帮助用户做决策的客观依据,让其真正实现商业智能。”日前,在线业务优化产品与服务提供商国双科技揭幕成立“国双数据中心”,该公司高级副总裁续扬向记者表示,数据对企业决策运营越来越重要,大数据时代来临,企业最终需要的数据不是单纯意义上的大数据,而是通过海量数据挖掘用户特征获取的有价值的“小数据”,进而使企业获取有价值的用户信息,科学地分析用户行为,帮助企业明确品牌定位、优化营销策略。
“小数据”是价值所在
“如今数据呈爆发式增长,已进入数据‘狂潮’时代,过去3年的数据量超过此前400年的数据总量。但是,高容量的数据要能够具体应用在各个行业才能算是有价值。”国双科技首席执行官祁国晟认为,大数据具有高容量、多元化、持续性和高价值4个显著特征。目前,各行各业的数据量正在迅速增长,使用传统的数据库工具已经无法处理这些数据。在硬件发展有限的条件下,通过软件技术的提升来处理不断增长的数据量,对数据利用率的提升以及各行业的发展起着重要的推动作用