1. 数据挖掘分析工具有哪些
人工智能与大数据应用常用的软件有:
1、对于传统分析和商业统计来说,常用的软件工具有Excel、SPSS和SAS。
2、对于数据挖掘来说,由于数据挖掘在大数据行业中的重要地位,所以使用的软件工具更加强调机器学习,常用的软件工具是SPSS Modeler。
3、大数据可视化。在这个领域,最常用目前也是最优秀的软件莫过于TableAU。
4、关系分析。关系分析是大数据环境下的一个新的分析热点,其最常用的是一款可视化的轻量工具——Gephi。
2. 数据挖掘常用的工具软件
相比较来说爱企查比较好用,主要还是看各自需求了。
爱企查是百度旗下企业信息垂直搜索引擎与展示平台。作为中国知名的企业大数据平台,依托百度先进的AI和大数据技术,为网民提供真实快速的企业信息免费查询服务。通过对企业监管、经营行为、市场反馈、关系网络等信息的全面及时的专业解读,降低数据流通壁垒,提升商业安全,促进经济社会健康持续发展。
3. 数据挖掘分析工具有哪些类型
据的处理过程可以分为大数据采集、存储、结构化处理、隐私保护、挖掘、结果展示(发布)等,各种领域的大数据应用一般都会涉及到这些基本过程,但不同应用可能会有所侧重。对于互联网大数据而言,由于其具有独特完整的大数据特点,除了共性技术外,采集技术、结构化处理技术、隐私保护也非常突出。
有很多算法和模型可以解决这些处理过程中的技术问题,并且为了最终用户的使用方便,它们大都被进一步的封装,形成了比较简单易用的操作平台。目前大数据技术平台有很多,归纳起来可以按照以下方式进行分类:
(1)从大数据处理的过程来分:包括数据存储、数据挖掘分析、以及为完成高效分析挖掘而设计的计算平台,它们完成数据采集、ETL、存储、结构化处理、挖掘、分析、预测、应用等功能。
(2)从大数据处理的数据类型来划分:可以分为针对关系型数据、非关系型数据(图数据、文本数据、网络型数据等)、半结构化数据、混合类型数据处理的技术平台。
(3)从大数据处理的方式来划分:可以分为批量处理、实时处理、综合处理。其中批量数据是对成批数据进行一次性处理,而实时处理(流处理)对处理的延时有严格的要求,综合处理是指同时具备批量处理和实时处理两种方式。
(4)从平台对数据的部署方式看:可以分为基于内存的、基于磁盘的。前者在分布式系统内部的数据交换是在内存中进行,后者则是通过磁盘文件的方式。
此外,技术平台还有分布式、集中式之分,云环境和非云环境之分等。阿里云大数据平台构建在阿里云云计算基础设施之上,为用户提供了大数据存储、计算能力、大数据分析挖掘、以及输出展示等服务,用户可以容易地实现BI商业智能、人工智能服务,具备一站式数据应用能力。
不同的大数据技术平台提供了对这些处理过程的支持,有的平台可能会支持多个过程,但是侧重点也不同,支持的深度也有所不同,因此有必要熟悉各种平台的功能,并做出比较分析,以便在实际应用中选择适合于自己需求的技术平台。
选择一个合适的大数据技术平台是非常重要的,它能够使得大数据应用开发更加容易、让开发人员更集中精力在业务层面的数据分析与处理上。一些共性的基础问题,例如数据如何存储、如何检索、数据统计等,就可以由平台来完成。选择合适的大数据技术平台应当考虑以下因素:
(1)平台的功能与性能:由于不同平台侧重的功能不同,平台的性能也就有很多需要考察的方面。比如对于存储平台来说,数据的存储效率、读写效率、并发访问能力、对结构化与非结构化数据存储的支持,所提供的数据访问接口等方面就是比较重要的。对于大数据挖掘平台来说,所支持的挖掘算法、算法的封装程度、数据挖掘结果的展示能力、挖掘算法的时间和空间复杂度等,是比较重要的指标。
(2)平台的集成度:好的平台应该具有较高的集成度,为用户提供良好的操作界面,具有完善的帮助和使用手册、系统易于配置、移植性好。同时随着目前软件开源的趋势,开源平台有助于其版本的快速升级,尽快发现其中的bug,此外,开源的架构也比较容易进行扩展,植入更多的新算法,这对于最终用户而言也是比较重要的。
(3)是否符合技术发展趋势:大数据技术是当前发展和研究的热点,其最终将走向逐步成熟,可以预见在这个过程中,并非所有的技术平台都能生存下来。只有符合技术发展趋势的技术平台才会被用户、被技术开发人员所接受。因此,一些不支持分布式、集群计算的平台大概只能针对较小的数据量,侧重于对挖掘算法的验证。而与云计算、物联网、人工智能联系密切的技术平台将成为主流,是技术发展趋势。
技术迭代更新速度加快,当我们花很多时间去掌握熟悉某种技术平台后,可能新的更好的技术平台出现了,导致我们受累奔波于各种技术平台,因此,最好的策略就是全面系统地掌握大数据技术的原理和实现方案,这样学习新的技术平台就很容易上手。
4. 有哪些主流的数据挖掘工具
这类软件主要用于更专业的数据分析挖掘工作,尤其是在银行、金融、保险业。
SPSS、SAS都是用于统计分析,围绕统计学知识的一些基本应用,包括描述统计,方差分析,因子分析,主成分分析,基本的回归,分布的检验等等。SPSS用于市场研究较多,SAS银行金融和医学统计较多,有一些难度。
R语言像是综合性较强的一类数据分析工具,集统计分析、数据挖掘,数据可视化。
展开来,讲讲数据分析~
这些数据分析工具的使用还是看需求,每个企业应用的选择和方式都不同。数据分析的概念很广,站在IT的角度,实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层——数据报表层——数据分析层——数据展现层
第二维度:用户级——部门级——企业级——BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等
,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;
SQL Server2005或更高版本
,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;
DB2,Oracle数据库都是大型数据库
,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;
BI级别
,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。
2、报表/BI层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、Qlikview、FineBI这类BI工具,可分在报表层也可分为数据展现层,涵盖了数据整合、数据分析和数据展现。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,可常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——商业智能
,所以在大数据处理方面的能力更胜一筹。
3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel。
Excel软件
,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;
SPSS软件
:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;
SAS软件
:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!
JMP分析
:SAS的一个分析分支
XLstat
:Excel的插件,可以完成大部分SPSS统计分析功能
4、表现层
表现层也叫数据可视化,以上每种工具都几乎提供了一点展现功能。FineBI和Tableau的可视化功能上文有提过。其实,近年来Excel的可视化越来越棒,配上一些插件,使用感更佳。
PPT:
办公常用,用来写数据分析报告;
Xmind&百度脑图:
梳理流程,帮助思考分析,展现数据分析的层次;
Xcelsius软件:
Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表。
最后,需要说明的是,这样的分类并不是区分软件,只是想说明软件的应用。有时候我们把数据库就用来进行报表分析,有时候报表就是分析,有时候分析就是展现;当然有时候展现就是分析,分析也是报表,报表就是数据存储了!
5. 数据挖掘分析工具有哪些种类
数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...
6. 数据挖掘的分析工具
spss不是开源的数据挖掘工具,需要购买许可才能激活使用。
7. 数据挖掘常用工具
3大常用的数据分析工具如下:
1、思迈特软件Smartbi
思迈特软件Smartbi是专业的BI工具,基于统一架构实现数据采集、查询、报表、自助分析、多维分析、移动分析、仪表盘、数据挖掘以及其他辅助功能,并且具有分析报告、结合AI进行语音分析等特色功能。十多年的发展历史,国产BI软件中最全面和成熟稳定的产品。广泛应用于金融、政府、电信、企事业单位等领域。完善的在线文档和教学视频,操作简便易上手。
2、MineSet
MineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。
3、QUEST
QUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,他的目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。