1. 数据挖掘入门书籍
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。
(1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。
(2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
2. 数据挖掘经典教材
数据挖掘起源于多种学科,其中最重要的是统计学和机器学习。统计学起源于数学其强调的是数学的精确性;机器学习主要起源于计算机实践其更倾向于实践,主动检测某个东西,来确定它的表现形式。
3. 数据挖掘书籍下载
有利于提高数据的运用能力,促进物联网的发展进步。
4. 数据分析与挖掘书籍
数据获取等方向都有涉及、数据维护、数据挖掘偏业务的可以称之为运营分析师,偏管理的可以称之为数据决策分析师,偏金融的可以称之为注册项目数据分析师,因行业和发展方向的不同,工作方向为维护数据可以称之为数据库管理员,数据库工程师,工作方向为挖掘方向的称之为数据挖掘师等等,数据分析师在 业务
5. 数据挖掘经典书籍
院校排名有厦门大学,投档线658分。
华东师范大学投档线657分。
上海财经大学投档线657分。
吉林大学投档分642分。
东华大学投档线639分,南京理工大学投档线639分。
华中师范大学投档线639分。
上海对外经贸大学投档线635分。中国地质大学投档线634分。等等
6. 数据挖掘电子书
高维数据的解答如下:
平时经常接触的是一维数据或者可以写成表形式的二维数据。
高维数据也可以类推,不过维数较高的时候,直观表示很难。
高维数据挖掘是基于高维度的一种数据挖掘,它和传统的数据挖掘最主要的区别在于它的高维度。高维数据挖掘已成为数据挖掘的重点和难点。随着技术的进步使得数据收集变得越来越容易,导致数据库规模越来越大、复杂性越来越高,如各种类型的贸易交易数据、Web 文档、基因表达数据、文档词频数据、用户评分数据、WEB使用数据及多媒体数据等,它们的维度(属性)通常可以达到成百上千维,甚至更高。
7. 数据挖掘技术与应用书籍
数据科学与大数据技术属于计算机专业。
课程教学体系涵盖了大数据的发现、处理、运算、应用等核心理论与技术,具体课程包括:大数据概论、大数据存储与管理、大数据挖掘、机器学习、人工智能基础、Python程序设计、统计学习、神经网络与深度学习方法;
多媒体信息处理、数据可视化技术、智能计算技术、分布式与并行计算、云计算与数据安全、数据库原理及应用、算法设计与分析、高级语言程序设计、优化理论与方法等。
8. 数据挖掘教材清华大学出版社
Python的用途十分广泛,根据使用目地的不同,选择不同的书籍。
1. python入门与熟悉python语言。推荐《笨方法学python (learn python the hard way)》,这本书用非常有趣的讲述方式介绍了python的基本语法,非常适合非计算机专业作为入门书来看。
2. 数据分析与可视化。推荐《利用python进行数据分析 》,这本书主要介绍了数据分析常用的几个模块:numpy、pandas、matplotlib,以及数据预处理需要的数据加载、清理、转换、合并、重塑等等,建议从第4章开始看,看完后,再接着看前3章。很多新接触的人从头开始看容易一头雾水,看不下去,接着就放弃了。以及《Python数据分析与数据化运营》(宋天龙著),实例丰富,附代码。
3. 数据挖掘。必须要懂机器学习的各种算法,我比较推荐的一本也是非常有名的一本书:《机器学习》(周志华著、清华大学出版社),因为封皮和书中的例子多以西瓜为例,所以别名西瓜书。
4. 机器学习相关。推荐《机器学习——Python实践》。该书系统地讲解了机器学习的基本知识,以及在实际项目中使用机器学习的基本步骤和方法;详细地介绍了在进行数据处理、分析时怎样选择合适的算法,以及建立模型并优化等方法,通过不同的例子展示了机器学习在具体项目中的应用和实践经验,是一本非常好的机器学习入门和实践的书籍。不同于很多讲解机器学习的书籍,本书以实践为导向,使用 scikit-learn 作为编程框架,强调简单、快速地建立模型,解决实际项目问题。读者通过对《机器学习——Python实践》的学习,可以迅速上手实践机器学习,并利用机器学习解决实际问题。