1. 数据挖掘的成功案例
数据挖掘起源于多种学科,其中最重要的是统计学和机器学习。统计学起源于数学其强调的是数学的精确性;机器学习主要起源于计算机实践其更倾向于实践,主动检测某个东西,来确定它的表现形式。
2. 数据挖掘 案例
1、分类:找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等。
2、回归分析:反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。
3、聚类分析:把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能的小。
4、关联规则:描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可到处另一些项在同一事物中也出现,即隐藏在数据间的关联或相互关系。
5、特征分析:从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。
6、变化和偏差分析:偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。
7、Web页挖掘:随着Internet的迅速发展及Web的全球普及,使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web的海量数据进行分析,收集有关的信息。
3. 数据挖掘的成功应用案例
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。
(1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。
(2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
4. 数据挖掘成功案例报告
岗位是比较不错的,无论是在甲方还是在乙方,这个岗位都是比较瞩目的,在甲方公司的话一定要吃透业务,如果自己有追求不想论日子的话还是需要自己努力加油的,当然在甲方想要晋升除了能力之外就是处变能力,一定程度上说后者可能更重要;如果在乙方的话那就是实打实的要靠能力吃饭了,一般来说在乙方能学到更扎实、更时髦的技术,确实是能提高你的技术能力的。
要说到哪个公司靠谱的话,我觉得移动和电信都还不错,移动呢要稍微辛苦点,电信么稍微轻松点,这是相对而言啊,可能各省份或地市也有差别,乙方的话国内的华为,国外的sap、oracle、emc都还不错,像国内的ibm、hp这样的老牌个人感觉失去了企业文化,被潮流推着走。以上为一家之言,供你参考,有问题再追问。
5. 数据挖掘的经典案例
决策树算法本身的特点使其适合进行属性数(特征数)较少情况下的高质量分类,因而适用于仅仅利用主题无关特征进行学习的关键资源定位任务。
决策树算法的核心问题是选取在树的每个结点即要测试的属性,争取能够选择出最有助于分类实例的属性.为了解决这个问题,ID3算法引入了信息增益的概念,并使用信息增益的多少来决定决策树各层次上的不同结点即用于分类的重要属性。
6. 数据挖掘的成功案例分享
将客户在电商平台的购物数据进行处理和挖掘,能够得知不同地区的人的生活习惯,例如衣服的尺寸大小,饮食的喜好等,都可以通过数据挖掘,数据化的方式推测出不同地区人的饮食习惯以及身高和体重等数据,这一系列的方式将有助于销售的进行以及相关资源的调配。
7. 数据挖掘成功案例代码
数据挖掘通常与计算机科学有关 。属于计算机科学专业
8. 数据挖掘的成功案例及分析
有利于提高数据的运用能力,促进物联网的发展进步。
9. 数据挖掘的成功案例分析
数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...
10. 数据挖掘典型案例
数据挖掘是从海量信息中进行搜索提取有价值信息的过程,是一个由处理数据、得到信息、挖掘知识等环节组成的工作过程,在这个过程中可能用到机器学习等各种算法,最终的目的是进行智能决策,而这个智能也可以理解为人工智能。比如说通过挖掘历史的销售数据找到商品之间的关联规则,大家熟知的啤酒尿布的故事就是一个典型案例。
模式识别
要想知道什么叫做模式识别,那就要先了解什么叫做模式,通常意义上,模式指用来说明事物结构的一种表达。它是从生产生活经验中经过抽象提炼出来的知识,说直白点就是可以用来表示事物的一些列特征的集合。
模式识别从十九世纪五十年代兴起,在二十世纪七八十年代风靡一时,是信息科学和人工智能的重要组成部分,主要被应用于图像分析与处理、语音识别、计算机辅助诊断、数据挖掘等方面。但是其效果似乎总是差强人意,因为模式识别中的事物特征是由人类设计总结的、主要基于人类在某一方面的领域知识,也就是说模式识别的效果不可能超过人类、有很大的局限性。