1. 数据挖掘是什么
1.数据挖掘竞赛是指:从海量数据中找到有意义的模式或知识的一类专业竞赛。
2.数据挖掘竞赛涉及到很多的算法,有源于机器学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关联分析的诸多算法。
3.数据挖掘竞赛内容就是:反复做数据观察, 反复增剪特征(需要领域知识和运气), 反复尝试各种各种模型,要进行各种各样的尝试,发掘有益数据和知识。所以工程代码量会很大。
随着人工智能的发展,越来越多的公司开始举办数据挖掘竞赛比赛,题目类型也越来越丰富。
2. 数据挖掘
是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
3. 数据挖掘是什么技术
首先要收集客户信息,与销售信息。然确定所用分析模型,对原有数据进行分类处理,建立分析模型,并对现有顾客进行关系预测(是否流失等等)。最好要有可视化部分和报表功能
4. 数据挖掘是什么意思?
大家都知道,在进行数据分析的时候需要先挖掘数据和存取数据,这样才能够为数据分析工作打好基础。
但是在一般情况下,数据挖掘出来之后是有很多无用重复的数据的,如果将这些数据直接分析的时候会影响分析结果,这就需要对数据进行加工。如果加工得好,那么出来后的数据是一个简洁、规范、清晰的样本数据。
数据加工的步骤通常包括数据抽取、数据转换、数据计算。
5. 数据挖掘是什么专业的
本科或硕士以上学历,数据挖掘、统计学、数据库相关专业。熟练掌握关系数据库技术,具有数据库系统开发经验;熟练掌握常用的数据挖掘算法;具备数理统计理论基础,并熟悉常用的统计工具软件。国内一批大学,211或者985最好。
6. 数据挖掘是什么型分析
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
数据挖掘对象
1.数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。
2.数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。
3.发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。
数据挖掘步骤
在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊地实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步地进行数据挖掘工作。比如,SPSS公司的5A和SAS公司的SEMMA。
数据挖掘过程模型步骤主要包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。下面让我们来具体看一下每个步骤的具体内容:
(1)定义问题。在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。
(2)建立数据挖掘库。建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
(3)分析数据。分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
(4)准备数据。这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
(5)建立模型。建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。
(6)评价模型。模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。
(7)实施。模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。
7. 数据挖掘是什么方向
应该是有很多方向的吧,大体可以分类为 1. 计算机技术方面的方向,比如提高机器处理性能等。
2. 算法方向,关于算法的修正和提升等 3. 应用方向,比如商业中应用,政府中应用,制造业中应用等。
8. 数据挖掘是什么过程
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。
(1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。
(2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
9. 数据挖掘是什么岗位
当然是大多都属数据处理部,有些可能就属于数据部或技术部
因为行业的不同在其它的一些行业中也会有数据处理这个职位。主要还是看各公司的规划
具体得看你所在的行业了。
我所了解到的大多数据处理的同行们都是市场调查或市场研究行业的。
主要是按要求对拿到的数据进行处理。将一些分析需要用到的数据从基础数据中挖掘出来。以TABLE的形式反给研究人员