1. 数据挖掘最新分类算法是什么
数据挖掘——常见的岗位有机器学习工程师、算法专家、数据科学家、统计科学家、各类Research Scientists等,他们做的事情主要是基于各类较为复杂的算法开发一个可以直接上线部署的模型。
这类岗位对技术的要求很强,需要很强的机器学习和深度学习领域的理论知识以及出色的工程实践能力,同时需要很好的研读(英文)文献的能力(算法日新月异,不学习根本不行),一般来说行业里的牛人大多是CS专业的phd出身。
2. 数据挖掘 分类
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。
数据挖掘涉及的学科领域和技术很多,有多种分类法。
(1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。
(2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。
3. 数据挖掘的十大算法介绍
数据挖掘的基本步骤是:1、定义问题;2、建立数据挖掘库;3、分析数据;4、准备数据;5、建立模型;6、评价模型;7、实施。
具体步骤如下:
1、定义问题
在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。
2、建立数据挖掘库
建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
3、分析数据
分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
4、准备数据
这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
5、建立模型
建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。
6、评价模型
模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。
7、实施
模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。
4. 数据挖掘 分类算法
KNN,全称k-NearestNeighbor。
算法的核心思想是:未标记样本的类别由距离其最近的K个邻居投票来决定。
可解决分类或者回归问题。由其思想可以看出,KNN是通过测量不同特征值之间的距离进行分类,而且在决策样本类别时,只参考样本周围k个“邻居”样本的所属类别。因此比较适合处理样本集存在较多重叠的场景,主要用于聚类分析、预测分析、文本分类、降维等,也常被认为是简单数据挖掘算法的分类技术之一。
5. 数据挖掘分类算法有哪些
数据挖掘分类方法有下列几种:
(1)决策树
决策树归纳是经典的分类算法。它采用自顶向下递归的各个击破方式构造决策树。树的每一个结点上使用信息增益度量选择测试属性。可以从生成的决策树中提取规则。
(2) KNN法(K-Nearest Neighbor)
KNN法即K最近邻法,最初由Cover和Hart于1968年提出的,是一个理论上比较成熟的方法。该方法的思路非常简单直观:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。
(3) SVM法
SVM法即支持向量机(Support Vector Machine)法,由Vapnik等人于1995年提出,具有相对优良的性能指标。该方法是建立在统计学习理论基础上的机器学习方法。通过学习算法,SVM可以自动寻找出那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类与类的间隔,因而有较好的适应能力和较高的分准率。该方法只需要由各类域的边界样本的类别来决定最后的分类结果。
(4) VSM法
VSM法即向量空间模型(Vector Space Model)法,由Salton等人于60年代末提出。这是最早也是最出名的信息检索方面的数学模型。其基本思想是将文档表示为加权的特征向量:D=D(T1,W1;T2,W2;…;Tn,Wn),然后通过计算文本相似度的方法来确定待分样本的类别。当文本被表示为空间向量模型的时候,文本的相似度就可以借助特征向量之间的内积来表示。
在
6. 数据挖掘分类的概念
1)根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。
例如,根据数据模型分类,可以有关系的、事务的、对象-关系的或数据仓库的挖掘系统。如果根据所处理数据的特定类型分类,可以有空间的、时间序列的、文本的、流数据的、多媒体的数据挖掘系统,或万维网挖掘系统。
2)根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析。一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。
此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层)。一个高级数据挖掘系统应当支持多抽象层的知识发现。数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地,概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。这些方法也能帮助检测离群点。
3)根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。复杂的数据挖掘系统通常采用多种数据挖掘技术,或采用有效的、集成的技术,结合一些方法的优点。
4)根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等。不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务
7. 数据挖掘最新分类算法是什么样的
IBM提出了大数据”5V”特点:
一、Volume:数据量大,包括采集、存储和计算的量都非常大。
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
五、Veracity:数据的准确性和可信赖度,即数据的质量。———————————————— 版权声明:本文为CSDN博主「arsaycode」的原创文章.........
8. 数据挖掘最新分类算法是什么意思
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。