1. 数据挖掘数据分析工具
天眼查更好一点。现在很多媒体,在查股东投资关系,股权结构时,都选择了这个工具,甚至还有一大部分媒体,利用天眼查给出的查询结果,搞出了一系列重磅新闻。
天眼查曾官方表态:天眼查的数据都来自政府公开渠道的信息,数据来源保证权威。比如国家企业信用信息公示系统,全国组织机构统一社会信用代码服务中心。截止目前,天眼查已收录了全国近2亿的社会实体信息(含企业,事业单位,基金会,学校,律所等),包含上市信息、企业背景、企业发展、司法风险、经营风险、经营状况、知识产权等100多种数据维度。
目前,天眼查是中国唯一一个任何人都可以无障碍访问的开放式企业信息查询平台,无需注册、登录,无须验证码。哪怕农民工兄弟,也能在天眼查上查询自己的公司有没有欠薪、跑路。
以往行业里的普遍观点是,非公开的数据才有价值。2015年到2016年,许多大数据公司通过贩卖私有数据获取高额利润,在国家出台《网络安全法》后,这些公司无法继续借此牟利。
天眼查却与其他人不同,从一开始就坚持只采用公开数据。
在柳超看来,数据的价值从来不在于其稀缺性,而在于数据分析、挖掘、联系之后得出的“洞见”型结论。
2. 数据挖掘的分析软件
数据挖掘的基本步骤是:1、定义问题;2、建立数据挖掘库;3、分析数据;4、准备数据;5、建立模型;6、评价模型;7、实施。
具体步骤如下:
1、定义问题
在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。
2、建立数据挖掘库
建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。
3、分析数据
分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。
4、准备数据
这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。
5、建立模型
建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。
6、评价模型
模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。
7、实施
模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。
3. 分析数据的工具
常用的数据分析软件主要有Excel、SAS、R、SPSS、友盟+、Python等。
Excel:为Excel微软办公套装软件的一个重要的组成部分,它可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
SAS是由美国北卡罗来纳州立大学1966年开发的统计分析软件,提供从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程。
R是一个开源的分析软件,也是分析能力不亚于SPSS和Matlab等商业软件的轻量级分析工具。
SPSS是“统计产品与服务解决方案”软件。除了基本的统计分析功能之外,还提供非线性回归、聚类分析(Clustering)、主成份分析(PCA)和基本的时序分析。
友盟+是最常用的APP分析软件,友盟+作为一款自助式分析工具,主要功能包括:App用户统计、用户行为分析、行业看板、用户运营工具。
Python是一种解释型脚本语言,语法简洁而清晰,具有丰富和强大的类库,现在大数据分析一般都用Python来完成。
4. 数据挖掘数据分析工具是什么
天眼查是由北京金堤科技有限公司旗下的商业安全工具,能构建完备的集数据采集、数据清洗、数据聚合、数据建模、数据产品化为一体的大数据解决方案。
该系列产品可以可视化呈现复杂的商业关系,还可以深度挖掘和分析相关数据、预警风险等。天眼查收录了全国超1.8亿家社会实体信息(包含上市信息、企业背景、企业发展等300多种数据维度),实现全量数据实时更新。2019年5月10日,获央行企业征信业务经营资质牌照。
5. 数据分析数据挖掘主要工具
Excel作为一种强大的数据挖掘工具,具备以下五大功能:
①函数、②图表、③数据分析、④数据透视表、⑤规划求解。
具体如下:
一、Excel中的函数
存储在电脑中的数据,不能直接分析,需要进行“统计和分析处理”。数据挖掘之前,需要求出数据的平均值、总和、最大值、最小值。开始挖掘之后,为厂得到更深层的结果,根据统计和分析的目的以及数据的性质,灵活使用不同的函数。
二、Excel中的图表
数据挖掘的重要方法之一是“数据可视化”Excel有70多种图表,常用的有:a、柱形图 b、折线图 c、散点图 d、直方图 e、帕雷托图。
三、Excel中的数据分析
数据挖掘工具有S-PLUs、SAS、SPSS等多种软件和专业应用程序。使用这些软件吋,需要具备一定的专业技术,还要负担一些费用。与此相反,Excel的“数据分析”对于数据挖掘的初学者而言,是一款操作简单而且实用的数据挖掘和统计分析分析工具。
四、Excel中的数据透视表
Excel可以将表格中的数据转换成“数据透视表”。数据透视表又叫“交叉表”。交叉表是把数据“分层”的表。数据挖掘时“分层”也是非常重要的一环。
五、Excel中的规划求解
规划求解,简单地说就是“线性规划法程序”,包括线性规划法,非线性规划法和整数规划法.打开“线性规划法’,读者可能会觉得难以操作。“规划求解”是在多种约束条件(公式化)下,为了使目标变量最大(最小)而求解未知数(也叫参数)的工具,使用范围非常广泛。
6. 数据挖掘数据分析工具有哪些
获得数据分析师认证证书,取得行业敲门金砖,并进而成功拿到心仪企业的Offer,是不少求职者的梦想。市场中的证书较多,有些是含金量高的,而有些是价值低的,大家一定要选择到好的认证。在这里给大家比较下目前市场中的数据分析类证书。
一般认证机构是两种类型,一种是国家部门认证,一种是行业性质认证。
l 国家部门认证
目前国家部门关于数据分析的认证还没有一个权威的机构。大数据属于新兴科技,一般前沿技术会先实践于企业之中,而相关部门的了解会有滞后性,所以关于大数据和数据分析的专业化技能、知识体系等主要是流行于高科技企业之中,在这个行业成熟之前,国家部门是无法颁发具备专业性兼具认可度和权威性的证书。目前有发证的机构是工信部、教育部、人社部,这几个部门发的证书更多是一个技能的证明,因为在他们管理的上千个认证中,根本无法做到专业,这些证书可能会在国有企事业单位中有一定的参考作用,但并不具有评职称作用,在大数据行业内也无人问津。
l 行业性质认证
1. SAS认证
SAS全球专业认证是由SAS公司颁发的、国际上公认的数据挖掘和商业智能领域的权威认证,随着我国DT环境和应用的日渐进步,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,会让您在数据挖掘、数据分析领域积累丰富经验奠定良好的基础。但是SAS面临的问题在于,越来越多的竞争性开源软件进入市场,如R语言,PYTHON,Spark等等,由于SAS昂贵的费用,导致自身软件的使用率下降,市场占有率低,在中国一般是大型银行有用到SAS,而其他单位的使用逐年减少。因此SAS证书对于大多数的数据分析人士来讲,如果你是倾向于找国有大型银行的工作,可以考虑;如果你是希望去北美发展,也可以考虑;但如果没有这种机会,最好还是考个其他的认证。by the way, Oracle的认证也类似,不过Oracle的认证没有SAS的好使
2. Coursera
Coursera是免费大型公开在线课程项目,由美国斯坦福大学两名计算机科学教授创办。旨在同世界顶尖大学合作,在线提供免费的网络公开课程。Coursera的首批合作院校包括斯坦福大学、密歇根大学、普林斯顿大学、宾夕法尼亚大学等美国名校。
Coursera证书是每门课程的结业证书,代表修过这门课程并具备相关技能,在美国来讲一些学校是认可的,对申报留学也许有一些作用,但是在国内来讲也更多是一个技能参考作用。by the way, edx也类似
3. CDA数据分析师认证
CDA认证是由CDA Institute发起,在国内由经管之家承办的数据分析师专业证书。是一套专业化,科学化,国际化,系统化的人才考核标准,分为LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流。每年6月与12月底在全国范围举办线下数据分析师考试,通过考试者可获得CDA数据分析师认证证书。CDA认证目前已被德勤(Deloitte)、苏宁、中国电信、重庆统计局等企业单位纳入到了内部员工的考核之中,并且来自百度、阿里、京东、惠普、中国银行、IBM、联想、移动、华为、尼尔森宝马、奔驰及政府部门等企业单位的员工有考取CDA认证,并获得了不错的薪资和职位。由于CDA数据分析师专注于数据分析和大数据领域,每年投入大量的资金和人力用于研发,目前CDA认证算是国内最具认可度、含金量最高的证书。
4. BDA认证
BDA是由中国商业统计学会设立的数据分析师培训与考试项目,为提高数据分析工作人员的业务素质。分为初、中、高三个级别,该认证近两年才出来,属于一个新的证书,目前还没有一定的知名度。相关的宣传网站建设还不完善,知识体系还不够强,不推荐大家考取。
5. CPDA认证
CPDA是中国商业联合会下面的二级分会颁发的证书,CPDA的实际意思是项目数据分析师,之前的培训重点在财务方向,自大数据火起来后,逐步往统计和软件方向靠,从品牌定位来讲不明确统一,并且这是培训绑定证书,必须缴纳高额的培训费用才能参加考试,并且多年来一直是只有一门几天的课程内容,不具有完整的知识体系,加上中国商业联合会也是一个非数据科学技术的协会,从专业角度来讲有一些水分。因其在宣传上推广力度大,知道其品牌的新人小白人士较多,但是从企业的认可来讲,参考意义不大。
其他的一些机构认证大多是自己公司的培训证书,就更没有参考价值了。
以上推荐的相关资源,希望能帮助大家快速进步,学习到必备技术,获取到认证证书,为自己的数据分析职业道路做好扎实的铺垫!
7. 数据挖掘分析工具有哪些
这类软件主要用于更专业的数据分析挖掘工作,尤其是在银行、金融、保险业。
SPSS、SAS都是用于统计分析,围绕统计学知识的一些基本应用,包括描述统计,方差分析,因子分析,主成分分析,基本的回归,分布的检验等等。SPSS用于市场研究较多,SAS银行金融和医学统计较多,有一些难度。
R语言像是综合性较强的一类数据分析工具,集统计分析、数据挖掘,数据可视化。
展开来,讲讲数据分析~
这些数据分析工具的使用还是看需求,每个企业应用的选择和方式都不同。数据分析的概念很广,站在IT的角度,实际应用中可以把数据分析工具分成两个维度:
第一维度:数据存储层——数据报表层——数据分析层——数据展现层
第二维度:用户级——部门级——企业级——BI级
1、数据存储层
数据存储设计到数据库的概念和数据库语言,这方面不一定要深钻研,但至少要理解数据的存储方式,数据的基本结构和数据类型。SQL查询语言必不可少,精通最好。可从常用的selece查询,update修改,delete删除,insert插入的基本结构和读取入手。
Access2003、Access07等
,这是最基本的个人数据库,经常用于个人或部分基本的数据存储;MySQL数据库,这个对于部门级或者互联网的数据库应用是必要的,这个时候关键掌握数据库的库结构和SQL语言的数据查询能力;SQL Server2005或更高版本
,对中小企业,一些大型企业也可以采用SQL Server数据库,其实这个时候本身除了数据存储,也包括了数据报表和数据分析了,甚至数据挖掘工具都在其中了;DB2,Oracle数据库都是大型数据库
,主要是企业级,特别是大型企业或者对数据海量存储需求的就是必须的了,一般大型数据库公司都提供非常好的数据整合应用平台;BI级别
,实际上这个不是数据库,而是建立在前面数据库基础上的,企业级应用的数据仓库。Data Warehouse,建立在DW机上的数据存储基本上都是商业智能平台,整合了各种数据分析,报表、分析和展现,BI级别的数据仓库结合BI产品也是近几年的大趋势。2、报表/BI层
企业存储了数据需要读取,需要展现,报表工具是最普遍应用的工具,尤其是在国内。过去传统报表大多解决的是展现问题,如今像帆软报表FineReport也会和其他应用交叉,做数据分析报表,通过接口开放功能、填报、决策报表功能,能够做到打通数据的进出,涵盖了早期商业智能的功能。
Tableau、Qlikview、FineBI这类BI工具,可分在报表层也可分为数据展现层,涵盖了数据整合、数据分析和数据展现。FineBI和Tableau同属于近年来非常棒的软件,可作为可视化数据分析软件,可常用FineBI从数据库中取数进行报表和可视化分析。相对而言,可视化Tableau更优,但FineBI又有另一种身份——
商业智能
,所以在大数据处理方面的能力更胜一筹。3、数据分析层
这个层其实有很多分析工具,当然我们最常用的就是Excel。
Excel软件
,首先版本越高越好用这是肯定的;当然对excel来讲很多人只是掌握了5%Excel功能,Excel功能非常强大,甚至可以完成所有的统计分析工作!但是我也常说,有能力把Excel玩成统计工具不如专门学会统计软件;SPSS软件
:当前版本是18,名字也改成了PASW Statistics;我从3.0开始Dos环境下编程分析,到现在版本的变迁也可以看出SPSS社会科学统计软件包的变化,从重视医学、化学等开始越来越重视商业分析,现在已经成为了预测分析软件;SAS软件
:SAS相对SPSS其实功能更强大,SAS是平台化的,EM挖掘模块平台整合,相对来讲,SAS比较难学些,但如果掌握了SAS会更有价值,比如离散选择模型,抽样问题,正交实验设计等还是SAS比较好用,另外,SAS的学习材料比较多,也公开,会有收获的!JMP分析
:SAS的一个分析分支XLstat
:Excel的插件,可以完成大部分SPSS统计分析功能4、表现层
表现层也叫数据可视化,以上每种工具都几乎提供了一点展现功能。FineBI和Tableau的可视化功能上文有提过。其实,近年来Excel的可视化越来越棒,配上一些插件,使用感更佳。
PPT:
办公常用,用来写数据分析报告;Xmind&百度脑图:
梳理流程,帮助思考分析,展现数据分析的层次;Xcelsius软件:
Dashboard制作和数据可视化报表工具,可以直接读取数据库,在Excel里建模,互联网展现,最大特色还是可以在PPT中实现动态报表。最后,需要说明的是,这样的分类并不是区分软件,只是想说明软件的应用。有时候我们把数据库就用来进行报表分析,有时候报表就是分析,有时候分析就是展现;当然有时候展现就是分析,分析也是报表,报表就是数据存储了!
8. 数据分析挖掘软件工具
抖抖侠数据还算是靠谱的,抖抖侠官网是专业的一站式数据化短视频直播运营平台,提供抖音数据分析和管理,包括热门视频、音乐、播主、商品、抖音号数据分析、订单管理、dou+分析等,抖抖侠基于强大的数据分析能力,挖掘数据价值,助力直播电商决策。