1. 企业大数据分析与应用
大数据定义:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。
大数据特征:具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度相对低四大特征。
大数据应用:大数据的本质就是一大堆结构化的和非结构化的数据,从中抓取出有价值的内容或想要的数据。
大数据能干什么?
大数据可用于预测,决策,同时可以为机器学习和人工智能提供支撑等。
实现智能生产
在德国“工业4.0”中,通过信息物理系统(CPS)实现工厂/车间的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。
具体而言,生产线、生产设备都将配备传感器,抓取数据,然后经过无线通信连接互联网,传输数据,对生产本身进行实时监控。而生产所产生的数据同样经过快速处理、传递,反馈至生产过程中,将工厂升级成为可以被管理和被自适应调整的智能网络,使得工业控制和管理最优化,对有限资源进行最大限度使用,从而降低工业和资源的配置成本,使得生产过程能够高效地进行。
过去,设备运行过程中,其自然磨损本身会使产品的品质发生一定的变化。而由于信息技术、物联网技术的发展,现在可以通过传感技术,实时感知数据,知道产品出了什么故障,哪里需要配件,使得生产过程中的这些因素能够被精确控制,真正实现生产智能化。因此,在一定程度上,工厂/车间的传感器所产生的大数据直接决定了“工业4.0”所要求的智能化设备的智能水平。
此外,从生产能耗角度看,设备生产过程中利用传感器集中监控所有的生产流程,能够发现能耗的异常或峰值情况,由此能够在生产过程中不断实时优化能源消耗。同时,对所有流程的大数据进行分析,也将会整体上大幅降低生产能耗。
实现大规模定制
大数据是制造业智能化的基础,其在制造业大规模定制中的应用包括数据采集、数据管理、订单管理、智能化制造、定制平台等,核心是定制平台。定制数据达到一定的数量级,就可以实现大数据应用。通过对大数据的挖掘,实现流行预测、精准匹配、时尚管理、社交应用、营销推送等更多的应用。同时,大数据能够帮助制造业企业提升营销的针对性,降低物流和库存的成本,减少生产资源投入的风险。
利用这些大数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降,并将极大地减少库存,优化供应链。同时,利用销售数据、产品的传感器数据和供应商数据库的数据等大数据,制造业企业可以准确地预测全球不同市场区域的商品需求。由于可以跟踪库存和销售价格,所以制造业企业便可节约大量的成本。
“工业4.0”本质是基于信息物理系统(CPS)实现“智能工厂”,使智能设备根据处理后的信息,进行判断、分析、自我调整、自动驱动生产加工,直至最后的产品完成等步骤。可以说,智能工厂已经为最终制造业大规模定制生产做好了准备。
实现消费者个性化需求,一方面需要制造业企业能够生产提供符合消费者个性偏好的产品或服务,一方面需要互联网提供消费者的个性化定制需求。由于消费者人数众多,每个人需求不同,导致需求的具体信息也不同,加上需求不断变化,就构成了产品需求的大数据。
消费者与制造业企业之间的交互和交易行为也将产生大量数据,挖掘和分析这些消费者动态数据,能够帮助消费者参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。制造业企业对这些数据进行处理,进而传递给智能设备,进行数据挖掘,设备调整,原材料准备等步骤,才能生产出符合个性化需求的定制产品。
2. 企业大数据分析与应用学什么
大数据管理与应用专业以互联网+和大数据时代为背景,主要研究大数据分析理论和方法在经济管理中的应用以及大数据管理与治理方法。
• 培养目标
该专业培养知识、能力、素质全面发展,系统掌握经济管理基础理论、大数据分析方法和管理技能,具有创新意识、实践能力和国际视野的经济管理创新人才。
• 知识能力
1.掌握经济管理基础理论和现代信息管理理论;
2.掌握常用的大数据分析方法以及相关前沿理论知识;
3.熟练使用量化分析工具和商业应用软件;
4.具有良好的大数据管理能力和商业伦理道德观;
5.具备批判性思维和可持续学习能力。
考研方向
大数据技术与应用软件工程、大数据分析与应用方向工程硕士FAQ
主要课程
微观经济学、宏观经济学、管理学基础、运筹学、应用统计、计量经济学、商务数据分析、多元统计分析与R建模、时间序列分析方法、大数据基础设施、面向对象程序设计、数据库系统、数据仓库与数据挖掘、文本分析与文本挖掘、网络社会媒体营销分析、量化金融方法等。
就业方向和就业前景
该专业毕业生可继续深造,到国内外的著名高校,研究所等继续从事商业分析,数据科学等相关的研究生学习,也可以到企事业单位的,数据分析部门,商业智能部门等从事数据分析师,商业智能分析师,数据科学家,首席数据官等职位
3. 大数据分析在企业中的应用
主要业务包括数据采集,数据存储,数据分析,数据可视化以及数据安全等,这些是依托已有数据的基础上展开的业务模式,其他大数据公司是依靠大数据工具,对市场需求,为市场带来创新方案并推动技 术发展。这类公司里天云大数据在市场应用里更加广泛
4. 大数据分析及其应用
两者工作方向不同,各有特色,各有难点,只要努力去做,难点便不攻自破,很难给出那个更难的结论。
大数据系统研发,主要的工作是负责搭建大数据应用平台以及开发分析应用程序。
大数据分析应用,主要是运用相关技术对数据搜集、整理、分析,并依据数据做出行业研究、评估和预测。
5. 大数据企业用数据分析
是一种观察业务的各个方面,并寻找最好的方法使之顺利进行的方法。它可以帮助您优化从损失预防计划到产品创新过程的一切。
大数据分析的规模太大,无法将自己局限于一种技术。多种技术共同作用,可提供最准确,最有效的分析。
数据挖掘收集了大量信息,供数据科学家使用。数据管理通过有效的组织帮助优化这些流程。机器学习是AI的特定子集,可让分析人员检查更大,更复杂的数据集。