数据挖掘结论(数据挖掘结论是什么)

虚拟屋 2022-12-24 01:00 编辑:admin 155阅读

1. 数据挖掘结论是什么

1、确定报告框架

先确定分析报告的主体架构,只有清晰的架构,才能规划好整个报告的主题,结构才能让阅读者一目了然。同时要找准论点、论据,这样能够体现出强大的逻辑性。

2、数据源的获取

数据源是数据分析的基础,很多分析报告在进行数据的挖掘收集时,缺乏科学依据性,逻辑性差,保证正确全面的数据源很重要。

3、数据处理

数据处理的目的:从大量的、杂乱无章的数据中抽取出对解决问题有价值、有意义的数据。将多余重复的数据筛选清除,将缺失数据补充完整,将错误数据纠正或删除。

4、数据分析

结论明确精简:结论要根据数据说话,力求结论做到严谨、专业。每个分析都有结论,而且结论—定要明确,分析结论不要太多要精,—个分析对应—个最重要的结论就好了,分析就是发现问题,只要发现重大的问题就达到目的了。

2. 数据挖掘导论

背景:

属性集和类变量之间的关系是不确定的,其一,噪声数据的干扰;其二,出现某些影响分类的因素没有包含在属性集中。

因此,出现一种对属性集和类变量的概率关系建模的方法。贝叶斯定理是把类的先验知识和从数据中收集的新证据相结合的统计原理。它可以通过先验概率、类条件概率和证据来表示后验概率。

条件概率的m估计(P144),当样例较少时,m估计通常是一种更加健壮的估计方法。

3. 数据挖掘概念

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘对象

1.数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

2.数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。

3.发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

数据挖掘步骤

在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊地实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步地进行数据挖掘工作。比如,SPSS公司的5A和SAS公司的SEMMA。

数据挖掘过程模型步骤主要包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。下面让我们来具体看一下每个步骤的具体内容:

(1)定义问题。在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

(2)建立数据挖掘库。建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

(3)分析数据。分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

(4)准备数据。这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

(5)建立模型。建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

(6)评价模型。模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。

(7)实施。模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。

4. 数据挖掘到底是什么

  这两个工具都很方便,不需要非常高深的编程能力,都适合算法开发,有大量的package供你使用。  Python入门简单,而R则相对比较难一些(纯个人感觉,依据每个人之前的经验,可能不同的体验)。R做文本挖掘现在还有点弱,当然它的优点在于函数都给你写好了,你只需要知道参数的形式就行了,有时候即使参数形式不对,R也能“智能地”帮你适应。这种简单的软件适合想要专注于业务的人。Python几乎都可以做,函数比R多,比R快。它是一门语言,R更像是一种软件,所以python更能开发出flexible的算法。  Python适合处理大量数据,而R则在这方面有很多力不从心,当然这么说的前提是对于编程基础比较一般的童鞋,对于大牛来说,多灵活运用矢量化编程的话,R的速度也不会太差。  论性能,Python介于C/C++/Java这些高级语言与R语言之间,虽然性能不及那些高级语言,但是一般日常的数据用Python基本都能实现,对于性能要求不挑剔的人来说,足够了  python你需要安装numpy,pandas,scipy,cython,statsmodels,matplotlib等一系列的程序包,还需要安装ipython交互环境,单独用python直接做计量分析统计函数是没有函数支持的;R是基于统计分析的,性能和效率上要略逊于python。R的优势在于统计学和数据计算和分析上要优越于python。  Python语言编程的代码可读性高,整体美观,属于简单粗暴性质的,短时间内少量代码可实现复杂功能;R的语法很奇怪,各种包并不遵守语法规范,导致使用起来经常感觉蛋疼;R程序最终看起来没有Python那么简洁美观。  从全面性方面,我认为Python的确胜过R。无论是对其他语言的调用,和数据源的连接、读取,对系统的操作,还是正则表达和文字处理,Python都有着明显优势。毕竟,python本身是作为一门计算机编程语言出现的,而R本身只是源于统计计算。所以从语言的全面性来说,两者差异显著。  python是machinelearning领域的人用的较多。据我所知,做marketingresearch,econometrics,statistics的人几乎没有用python的参考自:blog.sina.com.cn/s/blog_8813a3ae0101e631

5. 什么是数据挖掘分析

数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...

6. 到底什么是数据挖掘

1、数据分类

公司的数据往往是繁多且杂乱的,数据分析的目的之一数据分类,就是利用已具有分类的相似数据研究其分类的规则,将规则应用到未知分类的数据,并将其归类。

2、关联规则与推荐系统

关联规则又叫关联分析,是指在大型的数据库中找到一般的关联模式。推荐系统,看似很高深其实在我们的日常生活中非常常见,比如网购软件的首页购买推荐、视频软件的视频推送等,都是通过查找到关联规则来进行个性化推荐的。

3、数据缩减与降维

当出现变量的数量有限且有大量分类为同类组的样本数据时,通常会选择提高数据挖掘算法的性能,以实现数据缩减与降维。降维,简单说就是减少变量的数量。

4、数据探索与数据可视化

数据探索,旨在了解数据的总体情况并检测可能存在的异常值。数据可视化,是利用图表、图像等显示手段,实现清晰、有效的传达与沟通信息需求。提到数据可视化,就不得不提及到知名的大数据分析品牌思迈特软件Smartbi啦,Smartbi的数据可视化功能可以说是非常强啦,它支持ECharts图形库,支持包含瀑布图、树图和关系图等几十种可实现动态交互的图形,可以实现清晰、直观的观察数据。

以上就是数据分析的4大目的啦,接下来是数据分析的3大意义。

三、数据分析的意义

1、完整、科学地反映客观情况

通过对公司积累下来的海量数据进行统计、分析、研究并形成数据分析报告,我们就可以得到较为完整、科学的客观情况反映,从而协助我们制定出理性、正确的决策和计划,以充分发挥数据分析促进管理、参与决策的重要作用。

2、监督公司运行状态

通过分析公司大量的数据和资料,可以比较全面、精准地了解到公司过去、现在的运行状态和发展变化情况,甚至能够比较准确地预测行业未来发展趋势,由此对公司的未来发展方向做出预测,规避风险。还能监督各部门对于方针政策的贯彻执行情况和生产经营计划的完成情况等。

3、提高数据分析人员素质

数据分析工作,不仅要求数据分析人员要具有数据分析的基础知识,还要求数据分析人员要有一定的经济理论知识。即不仅要掌握数据分析的方法,还要了解有关的经济技术状况、有一定的文化水平和分析归纳能力。这些要求都是对数据分析人员素质的考验,有利于提高数据分析人员的素质。

7. 数据挖掘的结果

数据挖掘的基本步骤是:1、定义问题;2、建立数据挖掘库;3、分析数据;4、准备数据;5、建立模型;6、评价模型;7、实施。

具体步骤如下:

1、定义问题

在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

2、建立数据挖掘库

建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

3、分析数据

分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

4、准备数据

这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

5、建立模型

建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

6、评价模型

模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。

7、实施

模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。

8. 数据挖掘概论

大数据专业好。

这里只谈数学专业和大数据专业的比较:

大数据专业,提现在应用,我想它的内容会包含跟大数据有关的课程,比如概论,数统,回归分析,数据挖掘,精算,模型分析,SARS或SPSS应用等等。其目的在于,尽可能的从各种角度整理、挖掘数据背后的潜在价值信息,为决策提供理性的有力的方向和支撑。

为了好理解,不妨把大数据专业要解决的问题,比做为“在河沙里淘金”。于是,它所包含的各学科就是“淘金”涉及的工具及说明书,于是,概论和数统就像操作流程说明,是理论指导;数据挖掘就成了类似过滤筛选的工具,并给出详细说明。再简单些,就是这个学科是挖机,专门挖沙的,那个学科是过滤机器,专门过滤的,另一学科是盆钵,专门盛金子的等等。

大数据专业就是这么一类,教你使用一批工具,完成一件事,解决一个问题的专业。

而数学专业,字面讲,它以数学为中心。而数学是所有自然学科的工具,是宇宙通用语言。

简单的讲,就是她会告诉你如何研究制造各种各样的工具。你修车,需要扳手,螺丝刀,千斤顶等等。她是这些工具的制造厂。

数学专业旨在解决数学的延拓与发展,而数学本身是逻辑的,理性的,分析的语言,语言是沟通交流解决问题的工具,所以,她其实是在拓展人类的思想武器,武装更先进的设备,为人类社会各行各业提供应用工具。

以上看,大数据专业所涉及的种种工具,只是数学这个大工厂的一小小部分。数学还为物理提供理论基石,没有数学骨架支撑的物理,只是不能被应用,不能被理解的思想。数学还未天文学,化学,生物等提供理论分析工具。

总的讲,大数据专业,是部分工具的应用说明,并以此组合解决数据信息问题。而数学专业,是研究如何生产制造工具的专业,没有她,生产力不会进步。就像古人伐木,靠斧头 ,后来靠人工锯齿,而今,电锯。这是质的飞跃。

9. 数据挖掘论述题

有利于提高数据的运用能力,促进物联网的发展进步。