1. 数据挖掘模型可视化设计
数据可视化大赛数据可以通过以下方式获得:数据采集,数据ETL清洗加工,数据分析处理,数据挖掘,一般会存到数据仓库中,再到数据可视化展示。一、免费的数据源网站 1、简单、公开的数据集 先分享一些科研机构、企业、政府会开放的一些数据集和一些专业的数据下载网站。 这些数据集一般都比较完善、质量相对较高,拿到手数据清洗的工作比较少,适合新手做一些简单基础的分析 1)中国统计信息网:http://www.tjcn.org/ 全国各级政府各年度的国民经济和社会发展统计信息,部分数据免费 2)国家统计局:http://www.stats.gov.cn/ 各种民生相关的统计数据,而且所有数据都是免费,
2. 数据可视化设计案例
具体的方法/步骤:
1/6打开Excel进行构建一些数据。把最后一列数据进行可视化。
2/6在这最后一列的下面添加一个数据100%。数据作为参考。
3/6将最后一列数据包括参考值一起选中。
4/6在顶部的菜单栏中选择条件格式,在伽利略中点击数据条,选择一个渐变颜色。
5/6就可以看到最后一列数据已经是格式化,看起来非常的直观明,选中最后一行,将最后一行进行隐藏。
6/6隐藏最后一行之后,数据可视化操作就结束。
3. 数据的分析与挖掘从可视化分析
大量来自零售企业的BI数据可视化分析咨询就已足够说明:在大数据飙升、市场竞争越来越讲究效率的当下,系统自带的报表功能早已满足不了零售数据分析高效、深入、直观易懂的分析需求。无法及时对大量零售数据进行深度分析挖掘,也就无法有效地指导经营决策。
零售数据分析软件不更新换代,失去的不是短时间的盈利,是更长远巨大的商机。系统自带的报表功能能够实现固定报表自动化,如日报、周报、月报等重复性报表的数据查询,但在响应业务变化挖掘数据信息,实现数据驱动业务等效果上却无法给予有效支持。而BI智能零售数据分析软件则可面向不具备IT背景的业务人员。在无需IT协助的前提下,通过自主分析实现业务探索、追踪业务落地情况,真正实现“数据驱动业务”的效果。
简单来说,使用BI数据分析技术做零售数据分析,你将获得以下的明显改变:
1、你将以更快的速度掌握销售趋势、门店销售、成本利润等零售数据分析
奥威BI零售数据分析_会员销售分析
如果你在使用奥威BI数据可视化分析软件的同时,还搭配了奥威BI零售行业数据分析方案,那么恭喜你。只需更新数据,你就能立即获得一整个企业完整的零售数据分析。这是因为奥威BI零售行业数据分析方案自带分析模型与零售数据分析报表模板,因此只需更新数据,系统即可智能匹配并完成各项数据运算、分析挖掘,形成图形化零售数据分析报表。
即使没有搭配奥威BI零售数据分析方案,在以拖拉拽为报表制作模式、点击应用为智能分析功能使用模式的奥威BI数据可视化分析软件上,你也能根据业务变化快速制作新的零售数据分析报表。
2、你将可以根据自己的分析思维和需要,秒速获得所需的分析报表
奥威BI零售数据分析_联动效果
根据自己的思维变化、个性化分析需求去灵活分析数据,秒速获得更适合自己的数据分析报表,才能更灵活及时地掌握销售变化规律,以数据为动力支持引导销售,提高零售企业的销售额、销售利润。同样地,由于可更灵活地根据需求自助式分析数据,不同部门的员工都能实现数据驱动业务,提升业务能力的效果。
在奥威BI数据可视化分析软件的demo平台上,打开任意零售数据分析报表,都能体验秒响应的自助式数据分析效果。
3、对同一组数据,你将获得意想不到的观察分析效果
别人家的零售数据分析报表只有一个固定的分析角度,但BI零售数据分析报表却具有多个。高效联动、智能钻取(任意钻取)、筛选、多维动态可视化分析等,在众多智能分析功能的共同支持下,你能通过联动多个主题分析图表进行联合分析,或者以数据关联为纽带顺藤摸瓜挖出整个数据链,又或者自行筛选数据、修改字段与维度组合来切换不同视角分析数据。在这种多维度的分析挖掘下,你将得到一个更为高效、透彻的零售数据可视化分析体验。
4、你将能够更直观清晰地看到整个零售情况
只需简单地点击,大到整个零售数据业务,小到个人业务完成分析都将一一直观呈现在眼前。因此不管是要发现并解决眼前的零售业务问题,还是要制定整个企业的战略策略,你都能通过简单的操作来获得足够的数据支持。
零售企业要提升零售利润不能只着眼于当下,还需放眼于未来,能够随时根据零售市场动向快速制定、修正经营策略,而在这个过程中少不了借助BI零售数据分析报表的帮助。
4. 数据分析模型设计
数据设计模型可以理解为数据计算设计的解题模型。或者是通过一些数据进行设计模型
5. 数据挖掘模型可视化设计案例
时空大数据包含时间、空间、专题属性,具有多源、海量、高速的特点,是大数据与时空属性的融合。而网格化管理首先需要城市部件、城市事件、单元网格、房屋建筑和人口数据等的支撑,再融入其它海量数据,在这个基础上,通过GIS拓展各类服务应用,然后运用数据技术和数据思维解决各类实际问题。
大数据的存储、挖掘和可视化,以及回归统计、预测模型、语义引擎、关联规则分析等技术方法,已经成为数据驱动治理背景下网格化管理必不可少的条件和手段,而这些都是传统技术难以实现的。
6. 数据挖掘可视化分析
本文所演示的的可视化方法
散点图 (Scatterplot)
直方图 (Histogram)
小提琴图 (Violinplot)
特征两两对比图(Pairplot)
安德鲁斯曲线 (Andrews curves)
核密度图 (Kernel density estimation plot)
平行坐标图 (Parallel coordinates)
Radviz (力矩图?)
热力图 (Heatmap)
气泡图 (Bubbleplot)
这里主要使用Python一个流行的作图工具: Seaborn library,同时Pandas和bubbly辅助。为什么Seaborn比较好?
因为很多时候数据分析,建模前,都要清洗数据,清洗后数据的结果总要有个格式,我知道的最容易使用,最方便输入模型, 最好画图的格式叫做"Tidy Data" (Wickham H. Tidy data[J]. Journal of Statistical Software, 2014, 59(10): 1-23.) 其实很简单,Tidy Data格式就是:
每条观察(记录)自己占一行
观察(记录)的每个特征自己占一列
举个例子,我们即将作图的数据集IRIS就是Tidy Data(IRIS(IRIS数据集)_百度百科):
Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
该数据集包含了5个属性:
Sepal.Length(花萼长度),单位是cm;
Sepal.Width(花萼宽度),单位是cm;
Petal.Length(花瓣长度),单位是cm;
Petal.Width(花瓣宽度),单位是cm;
种类:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),以及Iris Virginica(维吉尼亚鸢尾)。
IRIS数据可以看到,每条观察(ID=0,1,2...)自己占一行,每个特征(四个部位长/宽度,种类)自己占一列。Seaborn就是为Tidy Data设计的,所以方便使用。
所以这个数据集有6列,6个特征,很多时候做可视化就是为了更好的了解数据,比如这里就是想看每个种类的花有什么特点,怎么样根据其他特征把花分为三类。我个人的喜好是首先一张图尽量多的包含数据点,展示数据信息,从中发现规律。我们可以利用以下代码完全展示全部维度和数据这里用的bubbly:
三维图,全局观察
Python做出来,其实是一张可以拖动角度,放大缩小的图,拖一拖看各角度视图会发现三类还是分的挺明显的。Github上这个bubbly还是很厉害的,方便。
接下来开始做一些基础的可视化,没有用任何修饰,代码只有最关键的画图部分,可视化作为比赛的一个基础和开端,个人理解做出的图能看就行,美不美无所谓,不美也不扣分。因为
散点图,可以得到相关性等信息,比如基本上SepalLengthCm越大,SepalWidthCm越大
散点图使用Jointplot, 看两个变量的分布,KDE图,同时展示对应的数据点
就像上一篇说的,比赛中的每个环节都至关重要,很有必要看下这些分布直方图,kde图,根据这些来处理异常值等,这里请教,为什么画了直方图还要画KDE??我理解说的都是差不多的东西。
关于KDE:"由于核密度估计方法不利用有关数据分布的先验知识,对数据分布不附加任何假定,是一种从数据样本本身出发研究数据分布特征的方法,因而,在统计学理论和应用领域均受到高度的重视。"
无论如何,我们先画直方图,再画KDE
直方图
KDE 图这里通过KDE可以说,由于Setosa的KDE与其他两种没有交集,直接可以用Petailength线性区分Setosa与其他两个物种。
Pairplot箱线图,显示一组数据分散情况的统计图。形状如箱子。主要用于反映原始数据分布的特征,关键的5个黑线是最大值、最小值、中位数和两个四分位数。在判断异常值,处理异常值时候有用。
BoxPlot小提琴图
Violinplot
这个Andrews curves很有趣,它是把所有特征组合起来,计算个值,展示该值,可以用来确认这三个物种到底好不好区分,维基百科的说法是“If there is structure in the data, it may be visible in the Andrews' curves of the data.”(Andrews plot - Wikipedia)
Andrews' curves
radvizRadviz可视化原理是将一系列多维空间的点通过非线性方法映射到二维空间的可视化技术,是基于圆形平行坐标系的设计思想而提出的多维可视化方法。圆形的m条半径表示m维空间,使用坐标系中的一点代表多为信息对象,其实现原理参照物理学中物体受力平衡定理。 多维空间的点映射到二维可视空间的位置由弹簧引力分析模型确定。 (Radviz可视化原理 - CSDN博客) ,能展示一些数据的可区分规律。
数值是皮尔森相关系数,浅颜色表示相关性高,比如Petal.Length(花瓣长度)与 Petal.Width(花瓣宽度)相关性0.96,也就是花瓣长的花,花瓣宽度也大,也就是个大花。
不过,现在做可视化基本上不用python了,具体为什么可以去看我的写的文章,我拿python做了爬虫,BI做了可视化,效果和速度都很好。
finereport
可视化的一大应用就是数据报表,而FineReport可以自由编写整合所需要的报表字段进行报表输出,支持定时刷新和监控邮件提醒,是大部分互联网公司会用到的日常报表平台。
尤其是公司体系内经营报表,我们用的是商业报表工具,就是finereport。推荐他是因为有两个高效率的点:①可以完成从数据库取数(有整合数据功能)—设计报表模板—数据展示的过程。②类似excel做报表,一张模板配合参数查询可以代替几十张报表。
FineBI
简洁明了的数据分析工具,也是我个人最喜欢的可视化工具,优点是零代码可视化、可视化图表丰富,只需要拖拖拽拽就可以完成十分炫酷的可视化效果,拥有数据整合、可视化数据处理、探索性分析、数据挖掘、可视化分析报告等功能,更重要的是个人版免费。
主要优点是可以实现自助式分析,而且学习成本极低,几乎不需要太深奥的编程基础,比起很多国外的工具都比较易用上手,非常适合经常业务人员和运营人员。在综合性方面,FineBI的表现比较突出,不需要编程而且简单易做,能够实现平台展示,比较适合企业用户和个人用户,在数据可视化方面是一个不错的选择;
这些是我见过比较常用的,对数据探索有帮助的可视化方法。
7. 数据可视化技术分析
回归分析,假设检验,方差分析等统计学基本数据分析方法在excel数据分析功能包中有
8. 数据挖掘模型可视化设计方案
可视化的顺序模型:数据可视化的流程分为了七步:获取、分析、过滤、挖掘、表示、修饰、交互。