1. 数据库技术,数据挖掘,数据仓库
1、数据科学与大数据技术 本科专业,简称数据科学或大数据。 学制四年,授予工学学位或理学学位。 旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。
2、大数据技术与应用 高职院校专业。 学制四年,授予工学学位或理学学位。
旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才
2. 数据库技术,数据挖掘,数据仓库的区别
1)根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。
例如,根据数据模型分类,可以有关系的、事务的、对象-关系的或数据仓库的挖掘系统。如果根据所处理数据的特定类型分类,可以有空间的、时间序列的、文本的、流数据的、多媒体的数据挖掘系统,或万维网挖掘系统。
2)根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析。一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。
此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层)。一个高级数据挖掘系统应当支持多抽象层的知识发现。数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地,概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。这些方法也能帮助检测离群点。
3)根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。复杂的数据挖掘系统通常采用多种数据挖掘技术,或采用有效的、集成的技术,结合一些方法的优点。
4)根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等。不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务
3. 数据挖掘与数据库
学大数据。
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、veracity(真实性)。
大数据需要特殊的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
4. 数据挖掘 建立数据仓库
数据可视化大赛数据可以通过以下方式获得:数据采集,数据ETL清洗加工,数据分析处理,数据挖掘,一般会存到数据仓库中,再到数据可视化展示。一、免费的数据源网站 1、简单、公开的数据集 先分享一些科研机构、企业、政府会开放的一些数据集和一些专业的数据下载网站。 这些数据集一般都比较完善、质量相对较高,拿到手数据清洗的工作比较少,适合新手做一些简单基础的分析 1)中国统计信息网:http://www.tjcn.org/ 全国各级政府各年度的国民经济和社会发展统计信息,部分数据免费 2)国家统计局:http://www.stats.gov.cn/ 各种民生相关的统计数据,而且所有数据都是免费,
5. 数据库与数据仓库技术
二者的功能以及对时效性的要求不同。
数据仓库的设计主要是以面向业务为主,每天的数据入库都会以分区划分,入库操作比较繁琐,也是分析师的主要工具之一,对于读写性能以及时效性要求极高。
集成数据库是一个数据存储系统,主要是为了保存后台产生的业务数据,数据插入相对简单,对于时效性和性能没有太大要求。
6. 数据挖掘与数据仓库
OLAP与数据挖掘DM具有本质区别
(1)功能不同
数据挖掘DM的功能在于知识发现KDD。如:数据挖掘DM中的“分类”包括:贝叶斯分类、粗糙集分类、决策树分类等,是从数据中发现知识规则,是“透过现象看本质”;
而联机分析OLAP的功能在于“统计”和统计结果的展示,是“现象”和“表象”,不能实现数据挖掘DM的知识发现KDD功能。
(2)数据组成不同
数据挖是从混沌的、具有巨大噪声的数据中提炼知识规则;
而联机分析OLAP只是从已经规范化的、纯净的关系数据库中组织数据。
(3)知识与数据的关系不同
数据挖掘DM是从数据中发现知识KDD;
而联机分析OLAP是利用人已知的知识来有意识地组织和使用数据。
(4)基本方法不同
数据挖掘的基础是数学模型和算法;
而OLAP不需要数学模型和算法支持,只与数据仓库和OLAP自身知识相关。
7. 数据挖掘 数据仓库
1)数据仓库系统提供了标准的报表和图表展示功能,数据仓库内的数据来源于不同的业务处理系统,而数据仓库系统展示的数据是整个企业的数据集成,数据仓库的作用就是利用这些最宝贵的业务数据作出最明智的商业决策。
2)数据仓库支持多维分析。多维分析通过把一个实体的属性定义成维度,使用户能方便地从多个角度汇总、计算数据,增强了数据的分析处理能力,通过对不同维度数据的比较和分析,增强了信息处理能力。多维分析是数据仓库系统在决策分析过程中非常有用的一个功能。
3)数据仓库是数据挖掘技术的关键和基础。数据挖掘技术是在已有数据的基础上,帮助用户理解现有的信息,并且在当前信息的基础上,对未来的企业状况作出预测,在数据仓库的基础上进行数据挖掘,可以针对整个企业的发展状况和未来前景作出较为完整、合理、准确的分析和预测。
8. 数据仓库与数据挖掘的区别和联系
1、态度严谨负责
2、好奇心强烈
3、逻辑思维清晰
4、擅长模仿
5、勇于创新 数据分析师职业要求 : 1、计算机、统计学、数学等相关专业本科及以上学历; 2、具有深厚的统计学、数据挖掘知识,熟悉数据仓库和数据挖掘的相关技术,能够熟练地使用SQL; 3、三年以上具有海量数据挖掘、分析相关项目实施的工作经验,参与过较完整的数据采集、整理、分析和建模工作; 4、对商业和业务逻辑敏感,熟悉传统行业数据挖掘背景、了解市场特点及用户需求。 5、具备良好的逻辑分析能力、组织沟通能力和团队精神;
6、富有创新精神,充满激情,乐于接受挑战。