数据挖掘在工作中(数据挖掘在工作中的重要性)

虚拟屋 2022-12-24 18:51 编辑:admin 170阅读

1. 数据挖掘在工作中的重要性

大数据产生的背景:

1、随着物联网、社交网络、云计算等技术不断融入我们的生活以及现有的计算能力、存储空间、网络带宽的高速发展,人类积累的数据在互联网、通信、金融、商业、医疗等诸多领域不断地增长和累积。

2、互联网搜索引擎支持的数十亿次web搜索每天处理数万TB字节数据。全世界通信网的主干网上一天就有万TB字节数据在传输。现代医疗行业如医院、药店等也都每天产生庞大的数据量如医疗记录、病人资料、医疗图像等。数据的量级不断升级、应用的不断深入和大数据不可忽视的价值让我们不得不探索如何才能让我们更好的受益于这些数据。

3、大数据是一次对国家宏观调控、商业战略决策、服务业务和管理方式以及每个人的生活都具有重大影响的一次数据技术革命。大数据的应用与推广将给市场带来千万亿美元收益的机遇,称为数据带来的又一次工业革命。

4、随着高速发展的信息技术,不断扩张的数据库容量,互联网作为信息传播和再生的平台,“信息泛滥”、“数据爆炸”等现象不绝于耳,海量的数据信息使得人们难以做出快速的抉择。

5、信息冗余、信息真假、信息安全、信息处理、信息统一等问题也随着大数据给人们带来价值的同时也造成了一系列的问题。人们不仅希望能够从大数据中提取出有价值的信息,更希望发现能够有效支持生产生活中需要决策的更深层次的规律。

6、在现实情况的背景下,人们意识到需要有效地解决海量数据的利用问题具有研究价值和经济利益。面向大数据的数据挖掘的特有两个最重要的任务。一是实时性,如此海量的数据规模需要实时分析并迅速反馈结果。二是准确性,需要我们从海量的数据中精准提取出隐含在其中的用户需要的有价值信息,再将挖掘所得到的信息转化成有组织的知识以模型等方式表示出来,从而将分析模型应用到现实生活中提高生产效率、优化营销方案等。

2. 数据挖掘在工作中的重要性有哪些

1、数据分类

公司的数据往往是繁多且杂乱的,数据分析的目的之一数据分类,就是利用已具有分类的相似数据研究其分类的规则,将规则应用到未知分类的数据,并将其归类。

2、关联规则与推荐系统

关联规则又叫关联分析,是指在大型的数据库中找到一般的关联模式。推荐系统,看似很高深其实在我们的日常生活中非常常见,比如网购软件的首页购买推荐、视频软件的视频推送等,都是通过查找到关联规则来进行个性化推荐的。

3、数据缩减与降维

当出现变量的数量有限且有大量分类为同类组的样本数据时,通常会选择提高数据挖掘算法的性能,以实现数据缩减与降维。降维,简单说就是减少变量的数量。

4、数据探索与数据可视化

数据探索,旨在了解数据的总体情况并检测可能存在的异常值。数据可视化,是利用图表、图像等显示手段,实现清晰、有效的传达与沟通信息需求。提到数据可视化,就不得不提及到知名的大数据分析品牌思迈特软件Smartbi啦,Smartbi的数据可视化功能可以说是非常强啦,它支持ECharts图形库,支持包含瀑布图、树图和关系图等几十种可实现动态交互的图形,可以实现清晰、直观的观察数据。

以上就是数据分析的4大目的啦,接下来是数据分析的3大意义。

三、数据分析的意义

1、完整、科学地反映客观情况

通过对公司积累下来的海量数据进行统计、分析、研究并形成数据分析报告,我们就可以得到较为完整、科学的客观情况反映,从而协助我们制定出理性、正确的决策和计划,以充分发挥数据分析促进管理、参与决策的重要作用。

2、监督公司运行状态

通过分析公司大量的数据和资料,可以比较全面、精准地了解到公司过去、现在的运行状态和发展变化情况,甚至能够比较准确地预测行业未来发展趋势,由此对公司的未来发展方向做出预测,规避风险。还能监督各部门对于方针政策的贯彻执行情况和生产经营计划的完成情况等。

3、提高数据分析人员素质

数据分析工作,不仅要求数据分析人员要具有数据分析的基础知识,还要求数据分析人员要有一定的经济理论知识。即不仅要掌握数据分析的方法,还要了解有关的经济技术状况、有一定的文化水平和分析归纳能力。这些要求都是对数据分析人员素质的考验,有利于提高数据分析人员的素质。

3. 数据挖掘最重要的是什么

本科或硕士以上学历,数据挖掘、统计学、数据库相关专业。熟练掌握关系数据库技术,具有数据库系统开发经验;熟练掌握常用的数据挖掘算法;具备数理统计理论基础,并熟悉常用的统计工具软件。国内一批大学,211或者985最好。

4. 数据挖掘在工作中的重要性论文

  统计学,即统筹归划,指利用统计学中介绍的方法来计算出很多你自己需要的数据,再和相互比较研究,得出自己的结论,做出决定,改变一些策略之类。总之像回归分析法这样经典的统计学方法已经被应用到各行各业,包括会计学 统计学研究的重点领域。   

1.统计理论与方法的创新研究   统计学的生命力就在于应用,应用为统计学的发展赋予活力。   “十五”期间异方差性时间序列问题研究、离散多元统计分析研究、数据挖掘理论研究、异常数据诊断的研究、非参数理论与方法的研究、抽样与非抽样误差理论的研究等将是统计理论研究的热点。知识经济、新经济对统计理论与方法提出更高要求,如何适应电子商务时代统计数据的收集,空间遥感技术的运用等都为统计理论提出新挑战,统计工作者必须创新出适合各种复杂类型数据的统计方法才能适应实践的需求。   

2.开展空间统计学理论与应用的研究   空间统计学是近几年统计学发展的一个新领域,主要指运用遥感技术进行国土资源的测定,农业和林业、海洋生物、环境生态的观测。这种观测数据通常表现为网络形式,而且这些数据受到大气效应、观测工具等诸多因素的影响。空间统计学的应用在于,针对这种特殊的数据,研究误差控制、数据处理、模型建立、统计推断。这将是统计学研究的新领域。   计算机技术的发展对统计学发展影响的研究 信息技术与计算机技术的发展是推动新经济发展的主要动力。可以断言,没有计算机的发展就没有统计方法的普遍有效应用。计算机技术的飞速发展为统计学方法的应用带来挑战和发展的机遇。统计数据的收集如何有效借助网络技术,统计调查方法如何适应现代信息技术,统计数据处理如何深入都将成为研究的热点问题。   

3.生命科学与生物技术中统计方法的应用研究   21世纪是生命科学的世纪,人类不久将完全揭示人类基因排序。19世纪中叶基因学说的创立,就是依赖于统计推断技术,21世纪生命科学中将有大量的相关研究要借助统计方法与技术,这个领域的学者将大有作为。21世纪医学领域的科技创新,将使许多不治之症得到解决,生物制药将在医学领域大放异彩,统计学方法在生物制药技术中的广泛应用将是不争的事实。美国辉瑞制药公司每年投入50亿美金用于研究发展,在美的生物统计人员极易找到高薪的工作就足以说明这一领域的广阔前景。   

4.国家经济安全与金融、保险领域的应用研究   国家的经济安全及其金融危机的防范问题是中国改革开放中必须高度重视的问题。国家经济安全、金融危机的预警系统的研究是与统计学方法紧密联系的研究热点,投资项目的风险管理研究也将依赖统计学者去研究解决。保险产品的精算理论与实践在“九五”期间得到一定的进展,为这一领域的深入发展奠定了基础,如何将发达国家保险精算的理论与中国保险业实际相结合值得深入研究,尤其是保险精算方法向社会保障领域延伸的研究是中国国情赋予给这个领域的迫切任务。   

5.政府统计数据质量的进一步研究   政府统计数据的质量在“九五”期间得到国人的普遍关注。不仅国家哲学社科基金设立重点研究课题,几乎各地方政府也设专项研究,发表的论文已有近百篇。然而这方面的研究还有待深入,不仅从制度上约束、控制数据的可靠性,从检测、验证的方法上还需进一步探讨。有的重点课题已在检验方法上有所突破,但如何具体与中国政府实际数据紧

5. 数据挖掘的重要性体现在哪

这个专业从总体上看还是比较好就业的。随着社会发展,各种信息犹如火山爆发一般能量巨大,为了应对工作和生活需要,此时信息检索与数据挖掘专业就显得非常重要,可以极大地提高工作效率,实现信息利用目的,随着形势发展,这方面人才需求猛增,相信你会被就业市场看好的。

6. 数据挖掘的主要工作

我做数据挖掘相关的工作很多了。简单来谈一下个人对这个问题的看法。有说的不对的地方,欢迎各位同行批评指正:

数据挖掘大概可以分成四类问题,问题不一样,对应的处理方法也不同

1.预测问题:建模数据集合中有X和Y,Y是连续变量。通常用线性模型、随机森林、xgboost算法来解决。评估主要基于测试集上的均方误差或者相对误差。或者计算cross-validation的平均均方误差或者相对误差

2.分类为题:建模数据集合中有X和Y,Y是类别变量。通常用logistic回归、cart、随机森林、xgboost来解决。评估主要基于测试集合上的准确率和召回率或者计算cross-validation的平均准确率或召回率

3.聚类问题:建模数据集合只有X,没有Y。需要把X里面的样本分成多个群组。一般采用K-MEANS算法。不过业界没有统一的评估标准

4.异常检测问题:建模数据集合只有X,没有Y。需要把X数据里面的异常点找出来。这个相对而言比较麻烦。一般用Isolation Forest。业界似乎也没有统一的评价标注。

7. 数据挖掘带来的好处

优点:具有直观、形象、生动、具体等特点。统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。可直观展示统计信息属性(时间性、数量性等),对知识挖掘和信息直观生动感受起关键作用的图形结构。

劣势:柱状图的局限在于只适用中小规模的数据集。

适用,报表分析

8. 数据挖掘的主要作用

1、在发展前景方面,大数据的发展前景是比较好的,因为大数据运用广泛,各种行业都需要对于大数据的开发、挖掘、分析。

2、在就业方面,基于大数据基础的岗位较多,有大数据开发工程师、大数据分析师、数据挖掘工程师、大数据可视化工程师等,所以为更多的人提供了就业机会。

3、关于薪资方面,现在有关大数据方面的专业性人才稀少,尤其是缺乏高端人才,这就使得大数据人才的薪资水涨船高。

4、在政策方面,从2015年开始,国家就颁布了关于大数据的各种政策,推出了《促进大数据发展行动纲要》、《大数据产业发展规划(2016-2020年)》、《关于工业大数据发展的指导意见》、《全国一体化大数据中心协同创新体系算力枢纽实施方案》等政策,因此可体现出国家对于大数据的发展是表示着支持并从多方面推行大数据的发展。