数据挖掘一些方法(数据挖掘的常见方法)

虚拟屋 2022-12-22 21:39 编辑:admin 270阅读

1. 数据挖掘的常见方法

  您是否想更好地了解传统数据与大数据之间的区别,在哪里可以找到数据以及可以使用哪些技术来处理数据?

  这些是处理数据时必须采取的第一步,因此这是一个不错的起点,特别是如果您正在考虑从事数据科学职业!

  “数据”是一个广义术语,可以指“原始事实”,“处理后的数据”或“信息”。为了确保我们在同一页面上,让我们在进入细节之前将它们分开。

  我们收集原始数据,然后进行处理以获得有意义的信息。

  好吧,将它们分开很容易!

  现在,让我们进入细节!

  原始数据(也称为“ 原始 事实”或“ 原始 数据”)是您已累积并存储在服务器上但未被触及的数据。这意味着您无法立即对其进行分析。我们将原始数据的收集称为“数据收集”,这是我们要做的第一件事。

  什么是原始数据?

  我们可以将数据视为传统数据或大数据。如果您不熟悉此想法,则可以想象包含分类和数字数据的表格形式的传统数据。该数据被结构化并存储在可以从一台计算机进行管理的数据库中。收集传统数据的一种方法是对人进行调查。要求他们以1到10的等级来评估他们对产品或体验的满意程度。

  传统数据是大多数人习惯的数据。例如,“订单管理”可帮助您跟踪销售,购买,电子商务和工作订单。

  但是,大数据则是另外一回事了。

  顾名思义,“大数据”是为超大数据保留的术语。

  您还会经常看到它以字母“ V”为特征。如“大数据的3V ”中所述。有时我们可以拥有5、7甚至11个“ V”的大数据。它们可能包括– 您对大数据的愿景,大数据的价值,您使用的可视化工具或大数据一致性中的可变性。等等…

  但是,以下是您必须记住的最重要的标准:

  体积

  大数据需要大量的存储空间,通常在许多计算机之间分布。其大小以TB,PB甚至EB为单位

  品种

  在这里,我们不仅在谈论数字和文字。大数据通常意味着处理图像,音频文件,移动数据等。

  速度

  在处理大数据时,目标是尽可能快地从中提取模式。我们在哪里遇到大数据?

  答案是:在越来越多的行业和公司中。这是一些著名的例子。

  作为最大的在线社区之一,“ Facebook”会跟踪其用户的姓名,个人数据,照片,视频,录制的消息等。这意味着他们的数据种类繁多。全世界有20亿用户,其服务器上存储的数据量巨大。

  让我们以“金融交易数据”为例。

  当我们每5秒记录一次股价时会发生什么?还是每一秒钟?我们得到了一个庞大的数据集,需要大量内存,磁盘空间和各种技术来从中提取有意义的信息。

  传统数据和大数据都将为您提高客户满意度奠定坚实的基础。但是这些数据会有问题,因此在进行其他任何操作之前,您都必须对其进行处理。

  如何处理原始数据?

  让我们将原始数据变成美丽的东西!

  在收集到足够的原始 数据之后,要做的第一件事就是我们所谓的“数据预处理 ”。这是一组操作,会将原始数据转换为更易理解且对进一步处理有用的格式。

  我想这一步会挤在原始 数据和处理之间!也许我们应该在这里添加一个部分...

  数据预处理

  那么,“数据预处理”的目的是什么?

  它试图解决数据收集中可能出现的问题。

  例如,在您收集的某些客户数据中,您可能有一个注册年龄为932岁或“英国”为名字的人。在进行任何分析之前,您需要将此数据标记为无效或更正。这就是数据预处理的全部内容!

  让我们研究一下在预处理传统和大原始数据时应用的技术吗?

  类标签

  这涉及将数据点标记为正确的数据类型,换句话说,按类别排列数据。

  我们将传统数据分为两类:

  一类是“数字” –如果您要存储每天售出的商品数量,那么您就在跟踪数值。这些是您可以操纵的数字。例如,您可以计算出每天或每月销售的平均商品数量。

  另一个标签是“分类的” –在这里您正在处理数学无法处理的信息。例如,一个人的职业。请记住,数据点仍然可以是数字,而不是数字。他们的出生日期是一个数字,您不能直接操纵它来给您更多的信息。

  考虑基本的客户数据。*(使用的数据集来自我们的 SQL课程)

  我们将使用包含有关客户的文本信息的此表来给出数字变量和分类变量之间差异的清晰示例。

  注意第一列,它显示了分配给不同客户的ID。您无法操纵这些数字。“平均” ID不会给您任何有用的信息。这意味着,即使它们是数字,它们也没有数值,并且是分类数据。

  现在,专注于最后一列。这显示了客户提出投诉的次数。您可以操纵这些数字。将它们加在一起以给出总数的投诉是有用的信息,因此,它们是数字数据。

  我们可以查看的另一个示例是每日历史股价数据。

  *这是我们在课程Python课程中使用的内容。

  您在此处看到的数据集中,有一列包含观察日期,被视为分类数据。还有一列包含股票价格的数字数据。

  当您使用大数据时,事情会变得更加复杂。除了“数字”和“分类”数据之外,您还有更多的选择,例如:

  文字数据

  数字图像数据

  数字视频数据

  和数字音频数据

  数据清理

  也称为“ 数据清理” 或“ 数据清理”。

  数据清理的目的是处理不一致的数据。这可以有多种形式。假设您收集了包含美国各州的数据集,并且四分之一的名称拼写错误。在这种情况下,您必须执行某些技术来纠正这些错误。您必须清除数据;线索就是名字!

  大数据具有更多数据类型,并且它们具有更广泛的数据清理方法。有一些技术可以验证数字图像是否已准备好进行处理。并且存在一些特定方法来确保文件的音频 质量足以继续进行。

  缺失值

  “ 缺失的 价值观”是您必须处理的其他事情。并非每个客户都会为您提供所需的所有数据。经常会发生的是,客户会给您他的名字和职业,而不是他的年龄。在这种情况下您能做什么?

  您是否应该忽略客户的整个记录?还是您可以输入其余客户的平均年龄?

  无论哪种最佳解决方案,都必须先清理数据并处理缺失值,然后才能进一步处理数据。

  处理传统数据的技术

  让我们进入处理传统数据的两种常用技术。

  平衡

  想象一下,您已经编制了一份调查表,以收集有关男女购物习惯的数据。假设您想确定谁在周末花了更多钱。但是,当您完成数据收集后,您会发现80%的受访者是女性,而只有20%是男性。

  在这种情况下,您发现的趋势将更趋向于女性。解决此问题的最佳方法是应用平衡技术。例如,从每个组中抽取相等数量的受访者,则该比率为50/50。

  数据改组

  从数据集中对观察结果进行混洗就像对一副纸牌进行混洗一样。这将确保您的数据集不会出现由于有问题的数据收集而导致的有害模式。数据改组是一种改善预测性能并有助于避免产生误导性结果的技术。

  但是如何避免产生错觉呢?

  好吧,这是一个详细的过程,但概括地说,混洗是一种使数据随机化的方法。如果我从数据集中获取前100个观察值,则不是随机样本。最高的观察值将首先被提取。如果我对数据进行混洗,那么可以肯定的是,当我连续输入100个条目时,它们将是随机的(并且很可能具有代表性)。

  处理大数据的技术

  让我们看一下处理大数据的一些特定于案例的技术。

  文本数据挖掘

  想想以数字格式存储的大量文本。嗯,正在进行许多旨在从数字资源中提取特定文本信息的科学项目。例如,您可能有一个数据库,该数据库存储了来自学术论文的有关“营销支出”(您的研究主要主题)的信息。大数据分析技术有哪些https://www.aaa-cg.com.cn/data/2272.html如果源的数量和数据库中存储的文本量足够少,则可以轻松找到所需的信息。通常,尽管数据巨大。它可能包含来自学术论文,博客文章,在线平台,私有excel文件等的信息。

  这意味着您将需要从许多来源中提取“营销支出”信息。换句话说,就是“大数据”。

  这不是一件容易的事,这导致学者和从业人员开发出执行“文本数据挖掘”的方法。

  数据屏蔽

  如果您想维持可靠的业务或政府活动,则必须保留机密信息。在线共享个人详细信息时,您必须对信息应用一些“数据屏蔽”技术,以便您可以在不损害参与者隐私的情况下进行分析。

  像数据改组一样,“数据屏蔽”可能很复杂。它用随机和假数据隐藏原始数据,并允许您进行分析并将所有机密信息保存在安全的地方。将数据屏蔽应用于大数据的一个示例是通过“机密性保留数据挖掘”技术。

  完成数据处理后,您将获得所需的宝贵和有意义的信息。我希望我们对传统数据与大数据之间的差异以及我们如何处理它们有所了解。

https://www.toutiao.com/i6820650243210609166/

2. 数据挖掘的三种方法

  数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的但又是潜在有用的信息和知识的过程。数据挖掘的任务是从数据集中发现模式,可以发现的模式有很多种,按功能可以分为两大类:预测性(Predictive)模式和描述性(Descriptive)模式。在应用中往往根据模式的实际作用细分为以下几种:分类,估值,预测,相关性分析,序列,时间序列,描述和可视化等。

  数据挖掘涉及的学科领域和技术很多,有多种分类法。

  (1)根据挖掘任务分,可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘对象分,有关系数据库、面向对象数据库、空间数据库、时态数据库、文本数据源、多媒体数据库、异质数据库、遗产数据库以及环球网Web。

  (2)根据挖掘方法分,可粗分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习中,可细分为:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等。统计方法中,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等。神经网络方法中,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是多维数据分析或OLAP方法,另外还有面向属性的归纳方法等等。

3. 数据挖掘的常用方法

1)根据挖掘的数据库类型分类:数据挖掘系统可以根据挖掘的数据库类型分类。数据库系统本身可以根据不同的标准(如数据模型、数据类型或所涉及的应用)分类,每一类可能需要自己的数据挖掘技术。这样,数据挖掘系统就可以相应分类。

例如,根据数据模型分类,可以有关系的、事务的、对象-关系的或数据仓库的挖掘系统。如果根据所处理数据的特定类型分类,可以有空间的、时间序列的、文本的、流数据的、多媒体的数据挖掘系统,或万维网挖掘系统。

2)根据挖掘的知识类型分类:数据挖掘系统可以根据所挖掘的知识类型分类,即根据数据挖掘的功能分类,如特征化、区分、关联和相关分析、分类、预测、聚类、离群点分析和演变分析。一个综合的数据挖掘系统通常提供多种和/或集成的数据挖掘功能。

此外,数据挖掘系统还可以根据所挖掘的知识的粒度或抽象层进行区分,包括广义知识(高抽象层)、原始层知识(原始数据层)或多层知识(考虑若干抽象层)。一个高级数据挖掘系统应当支持多抽象层的知识发现。数据挖掘系统还可以分类为挖掘数据的规则性(通常出现的模式)与挖掘数据的奇异性(如异常或离群点)。一般地,概念描述、关联和相关分析、分类、预测和聚类挖掘数据的规则性,将离群点作为噪声排除。这些方法也能帮助检测离群点。

3)根据所用的技术类型分类:数据挖掘系统也可以根据所用的数据挖掘技术分类。这些技术可以根据用户交互程度(例如自动系统、交互探查系统、查询驱动系统),或所用的数据分析方法(例如面向数据库或面向数据仓库的技术、机器学习、统计学、可视化、模式识别、神经网络等)描述。复杂的数据挖掘系统通常采用多种数据挖掘技术,或采用有效的、集成的技术,结合一些方法的优点。

4)根据应用分类:数据挖掘系统也可以根据其应用分类。例如,可能有些数据挖掘系统特别适合金融、电信、DNA、股票市场、e-mail等。不同的应用通常需要集成对于该应用特别有效的方法。因此,泛化的全能的数据挖掘系统可能并不适合特定领域的挖掘任务

4. 数据挖掘的常见方法有哪些

“大数据”时代的数据挖掘的应用与方法

数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所以它所得到的信息应具有未知,有效和实用三个特征。因此数据挖掘技术从一开始就是面向应用的,目前数据挖掘技术在企业市场营销中得到了比较普遍的应用。它包括:数据库营销、客户群体划分、背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用记分、欺诈发现等。审计部门的数据挖掘以往偏重于对大金额数据的分析,来确实是否存在问题,以及问题在数据中的表现,而随着绩效审计的兴起,审计部门也需要通过数据来对被审计单位的各类行为做出审计评价,这些也都需要数据的支撑。

数据挖掘的方法有很多,它们分别从不同的角度对数据进行挖掘。其中绝大部分都可以用于审计工作中。1. 数据概化。数据库中通常存放着大量的细节数据,

通过数据概化可将大量与任务相关的数据集从较低的概念层抽象到较高的概念层。数据概化可应用于审计数据分析中的描述式挖掘,

审计人员可从不同的粒度和不同的角度描述数据集, 从而了解某类数据的概貌。大量研究证实, 与正常的财务报告相比,

5. 数据挖掘基本方法

数据挖掘是人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。知识发现过程由以下三个阶段组成:①数据准备;②数据挖掘;③结果表达和解释。数据挖掘可以与用户或知识库交互。

数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等

6. 数据挖掘的常见方法有

  您是否想更好地了解传统数据与大数据之间的区别,在哪里可以找到数据以及可以使用哪些技术来处理数据?

  这些是处理数据时必须采取的第一步,因此这是一个不错的起点,特别是如果您正在考虑从事数据科学职业!

  “数据”是一个广义术语,可以指“原始事实”,“处理后的数据”或“信息”。为了确保我们在同一页面上,让我们在进入细节之前将它们分开。

  我们收集原始数据,然后进行处理以获得有意义的信息。

  好吧,将它们分开很容易!

  现在,让我们进入细节!

  原始数据(也称为“ 原始 事实”或“ 原始 数据”)是您已累积并存储在服务器上但未被触及的数据。这意味着您无法立即对其进行分析。我们将原始数据的收集称为“数据收集”,这是我们要做的第一件事。

  什么是原始数据?

  我们可以将数据视为传统数据或大数据。如果您不熟悉此想法,则可以想象包含分类和数字数据的表格形式的传统数据。该数据被结构化并存储在可以从一台计算机进行管理的数据库中。收集传统数据的一种方法是对人进行调查。要求他们以1到10的等级来评估他们对产品或体验的满意程度。

  传统数据是大多数人习惯的数据。例如,“订单管理”可帮助您跟踪销售,购买,电子商务和工作订单。

  但是,大数据则是另外一回事了。

  顾名思义,“大数据”是为超大数据保留的术语。

  您还会经常看到它以字母“ V”为特征。如“大数据的3V ”中所述。有时我们可以拥有5、7甚至11个“ V”的大数据。它们可能包括– 您对大数据的愿景,大数据的价值,您使用的可视化工具或大数据一致性中的可变性。等等…

  但是,以下是您必须记住的最重要的标准:

  体积

  大数据需要大量的存储空间,通常在许多计算机之间分布。其大小以TB,PB甚至EB为单位

  品种

  在这里,我们不仅在谈论数字和文字。大数据通常意味着处理图像,音频文件,移动数据等。

  速度

  在处理大数据时,目标是尽可能快地从中提取模式。我们在哪里遇到大数据?

  答案是:在越来越多的行业和公司中。这是一些著名的例子。

  作为最大的在线社区之一,“ Facebook”会跟踪其用户的姓名,个人数据,照片,视频,录制的消息等。这意味着他们的数据种类繁多。全世界有20亿用户,其服务器上存储的数据量巨大。

  让我们以“金融交易数据”为例。

  当我们每5秒记录一次股价时会发生什么?还是每一秒钟?我们得到了一个庞大的数据集,需要大量内存,磁盘空间和各种技术来从中提取有意义的信息。

  传统数据和大数据都将为您提高客户满意度奠定坚实的基础。但是这些数据会有问题,因此在进行其他任何操作之前,您都必须对其进行处理。

  如何处理原始数据?

  让我们将原始数据变成美丽的东西!

  在收集到足够的原始 数据之后,要做的第一件事就是我们所谓的“数据预处理 ”。这是一组操作,会将原始数据转换为更易理解且对进一步处理有用的格式。

  我想这一步会挤在原始 数据和处理之间!也许我们应该在这里添加一个部分...

  数据预处理

  那么,“数据预处理”的目的是什么?

  它试图解决数据收集中可能出现的问题。

  例如,在您收集的某些客户数据中,您可能有一个注册年龄为932岁或“英国”为名字的人。在进行任何分析之前,您需要将此数据标记为无效或更正。这就是数据预处理的全部内容!

  让我们研究一下在预处理传统和大原始数据时应用的技术吗?

  类标签

  这涉及将数据点标记为正确的数据类型,换句话说,按类别排列数据。

  我们将传统数据分为两类:

  一类是“数字” –如果您要存储每天售出的商品数量,那么您就在跟踪数值。这些是您可以操纵的数字。例如,您可以计算出每天或每月销售的平均商品数量。

  另一个标签是“分类的” –在这里您正在处理数学无法处理的信息。例如,一个人的职业。请记住,数据点仍然可以是数字,而不是数字。他们的出生日期是一个数字,您不能直接操纵它来给您更多的信息。

  考虑基本的客户数据。*(使用的数据集来自我们的 SQL课程)

  我们将使用包含有关客户的文本信息的此表来给出数字变量和分类变量之间差异的清晰示例。

  注意第一列,它显示了分配给不同客户的ID。您无法操纵这些数字。“平均” ID不会给您任何有用的信息。这意味着,即使它们是数字,它们也没有数值,并且是分类数据。

  现在,专注于最后一列。这显示了客户提出投诉的次数。您可以操纵这些数字。将它们加在一起以给出总数的投诉是有用的信息,因此,它们是数字数据。

  我们可以查看的另一个示例是每日历史股价数据。

  *这是我们在课程Python课程中使用的内容。

  您在此处看到的数据集中,有一列包含观察日期,被视为分类数据。还有一列包含股票价格的数字数据。

  当您使用大数据时,事情会变得更加复杂。除了“数字”和“分类”数据之外,您还有更多的选择,例如:

  文字数据

  数字图像数据

  数字视频数据

  和数字音频数据

  数据清理

  也称为“ 数据清理” 或“ 数据清理”。

  数据清理的目的是处理不一致的数据。这可以有多种形式。假设您收集了包含美国各州的数据集,并且四分之一的名称拼写错误。在这种情况下,您必须执行某些技术来纠正这些错误。您必须清除数据;线索就是名字!

  大数据具有更多数据类型,并且它们具有更广泛的数据清理方法。有一些技术可以验证数字图像是否已准备好进行处理。并且存在一些特定方法来确保文件的音频 质量足以继续进行。

  缺失值

  “ 缺失的 价值观”是您必须处理的其他事情。并非每个客户都会为您提供所需的所有数据。经常会发生的是,客户会给您他的名字和职业,而不是他的年龄。在这种情况下您能做什么?

  您是否应该忽略客户的整个记录?还是您可以输入其余客户的平均年龄?

  无论哪种最佳解决方案,都必须先清理数据并处理缺失值,然后才能进一步处理数据。

  处理传统数据的技术

  让我们进入处理传统数据的两种常用技术。

  平衡

  想象一下,您已经编制了一份调查表,以收集有关男女购物习惯的数据。假设您想确定谁在周末花了更多钱。但是,当您完成数据收集后,您会发现80%的受访者是女性,而只有20%是男性。

  在这种情况下,您发现的趋势将更趋向于女性。解决此问题的最佳方法是应用平衡技术。例如,从每个组中抽取相等数量的受访者,则该比率为50/50。

  数据改组

  从数据集中对观察结果进行混洗就像对一副纸牌进行混洗一样。这将确保您的数据集不会出现由于有问题的数据收集而导致的有害模式。数据改组是一种改善预测性能并有助于避免产生误导性结果的技术。

  但是如何避免产生错觉呢?

  好吧,这是一个详细的过程,但概括地说,混洗是一种使数据随机化的方法。如果我从数据集中获取前100个观察值,则不是随机样本。最高的观察值将首先被提取。如果我对数据进行混洗,那么可以肯定的是,当我连续输入100个条目时,它们将是随机的(并且很可能具有代表性)。

  处理大数据的技术

  让我们看一下处理大数据的一些特定于案例的技术。

  文本数据挖掘

  想想以数字格式存储的大量文本。嗯,正在进行许多旨在从数字资源中提取特定文本信息的科学项目。例如,您可能有一个数据库,该数据库存储了来自学术论文的有关“营销支出”(您的研究主要主题)的信息。大数据分析技术有哪些https://www.aaa-cg.com.cn/data/2272.html如果源的数量和数据库中存储的文本量足够少,则可以轻松找到所需的信息。通常,尽管数据巨大。它可能包含来自学术论文,博客文章,在线平台,私有excel文件等的信息。

  这意味着您将需要从许多来源中提取“营销支出”信息。换句话说,就是“大数据”。

  这不是一件容易的事,这导致学者和从业人员开发出执行“文本数据挖掘”的方法。

  数据屏蔽

  如果您想维持可靠的业务或政府活动,则必须保留机密信息。在线共享个人详细信息时,您必须对信息应用一些“数据屏蔽”技术,以便您可以在不损害参与者隐私的情况下进行分析。

  像数据改组一样,“数据屏蔽”可能很复杂。它用随机和假数据隐藏原始数据,并允许您进行分析并将所有机密信息保存在安全的地方。将数据屏蔽应用于大数据的一个示例是通过“机密性保留数据挖掘”技术。

  完成数据处理后,您将获得所需的宝贵和有意义的信息。我希望我们对传统数据与大数据之间的差异以及我们如何处理它们有所了解。

https://www.toutiao.com/i6820650243210609166/

7. 数据挖掘方法6种

② 数据分析为了挖掘更多的问题,并找到原因;

③ 不能为了做数据分析而坐数据分析。

2、步骤:① 调查研究:收集、分析、挖掘数据

② 图表分析:分析、挖掘的结果做成图表

3、常用方法: 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行挖掘。 ①分类。分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。 ②回归分析。回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。 ③聚类。聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。 ④关联规则。关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。 ⑤特征。特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。 ⑥变化和偏差分析。偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 ⑦Web页挖掘。