数据挖掘的基本功能(数据挖掘的基本功能包括)

虚拟屋 2022-12-22 22:14 编辑:admin 155阅读

1. 数据挖掘的基本功能包括

计算机信息系统的五个基本功能:输入、存储、处理、输出和控制。

输入功能:信息系统的输入功能决定于系统所要达到的目的及系统的能力和信息环境的许可。

存储功能:存储功能指的是系统存储各种信息资料和数据的能力。

处理功能:基于数据仓库技术的联机分析处理(OLAP)和数据挖掘(DM)技术。

输出功能:信息系统的各种功能都是为了保证最终实现最佳的输出功能。

控制功能:对构成系统的各种信息处理设备进行控制和管理,对整个信息加工、处理、传输、输出等环节通过各种程序进行控制。

2. 什么是数据挖掘,其功能是什么

有利于提高数据的运用能力,促进物联网的发展进步。

3. 常用的数据挖掘功能包括数据探索分析

1、数据分类

公司的数据往往是繁多且杂乱的,数据分析的目的之一数据分类,就是利用已具有分类的相似数据研究其分类的规则,将规则应用到未知分类的数据,并将其归类。

2、关联规则与推荐系统

关联规则又叫关联分析,是指在大型的数据库中找到一般的关联模式。推荐系统,看似很高深其实在我们的日常生活中非常常见,比如网购软件的首页购买推荐、视频软件的视频推送等,都是通过查找到关联规则来进行个性化推荐的。

3、数据缩减与降维

当出现变量的数量有限且有大量分类为同类组的样本数据时,通常会选择提高数据挖掘算法的性能,以实现数据缩减与降维。降维,简单说就是减少变量的数量。

4、数据探索与数据可视化

数据探索,旨在了解数据的总体情况并检测可能存在的异常值。数据可视化,是利用图表、图像等显示手段,实现清晰、有效的传达与沟通信息需求。提到数据可视化,就不得不提及到知名的大数据分析品牌思迈特软件Smartbi啦,Smartbi的数据可视化功能可以说是非常强啦,它支持ECharts图形库,支持包含瀑布图、树图和关系图等几十种可实现动态交互的图形,可以实现清晰、直观的观察数据。

以上就是数据分析的4大目的啦,接下来是数据分析的3大意义。

三、数据分析的意义

1、完整、科学地反映客观情况

通过对公司积累下来的海量数据进行统计、分析、研究并形成数据分析报告,我们就可以得到较为完整、科学的客观情况反映,从而协助我们制定出理性、正确的决策和计划,以充分发挥数据分析促进管理、参与决策的重要作用。

2、监督公司运行状态

通过分析公司大量的数据和资料,可以比较全面、精准地了解到公司过去、现在的运行状态和发展变化情况,甚至能够比较准确地预测行业未来发展趋势,由此对公司的未来发展方向做出预测,规避风险。还能监督各部门对于方针政策的贯彻执行情况和生产经营计划的完成情况等。

3、提高数据分析人员素质

数据分析工作,不仅要求数据分析人员要具有数据分析的基础知识,还要求数据分析人员要有一定的经济理论知识。即不仅要掌握数据分析的方法,还要了解有关的经济技术状况、有一定的文化水平和分析归纳能力。这些要求都是对数据分析人员素质的考验,有利于提高数据分析人员的素质。

4. 数据挖掘的基本功能包括什么

数据挖掘起源于多种学科,其中最重要的是统计学和机器学习。统计学起源于数学其强调的是数学的精确性;机器学习主要起源于计算机实践其更倾向于实践,主动检测某个东西,来确定它的表现形式。

5. 在下列功能中属于数据挖掘技术基本功能的是

一般分为基础设施层、资源管理层、业务逻辑层、应用表现层四个层次。

信息系统是由计算机硬件、网络和通讯设备、计算机软件、信息资源、信息用户和规章制度组成的以处理信息流为目的的人机一体化系统。

信息系统的五个基本功能:输入、存储、处理、输出和控制。

输入功能:信息系统的输入功能决定于系统所要达到的目的及系统的能力和信息环境的许可。

存储功能:存储功能指的是系统存储各种信息资料和数据的能力。

处理功能:数据处理工具:基于数据仓库技术的联机分析处理(OLAP)和数据挖掘(DM)技术。

输出功能:信息系统的各种功能都是为了保证最终实现最佳的输出功能。

控制功能:对构成系统的各种信息处理设备进行控制和管理,对整个信息加工、处理、传输、输出等环节通过各种程序进行控制。

6. 简述数据挖掘的定义及功能

数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...

7. 属于数据挖掘技术基本功能的是

1、调查问卷法可以进行大规模的调查。

2、无论研究者是否参与了调查,或者参与的多少,都可以从问卷上了解被访者的基本态度与行为。这种方式是其他任何方法也不可能做到的,而且问卷调查可以周期的进行而不受调查研究人员变更的影响,可以跟踪某些问题用户的变化。

3、调查问卷是一种结构化的调查,其调查问题的表达形式、提问的顺序、答案的方式与方法都是固定的,而且是一种文字交流方式,因此,任何个人,无论是研究者,还是调查员都不可能把主观偏见代入调查研究之中。其调查的统计结果一般都能被量化出来。

4、由于调查问卷结果便于统计处理与分析。

5、问卷法节省时间、经费和人力,这是为什么经常采用问卷法的原因。

6、问卷法调查结果容易量化。

7、虽然他不可能取代面对面的调查问卷,但由于成本更低,更容易及时调整问卷设计上的不足,越来越多的问卷采用电子问卷的形式,可以通过网站,e-mail进行发布与回收。数据直接使用数据库记录,方便筛选与分析。

8、现在有大量的相关统计分析软件可以帮助我们进行数据分析,有些甚至能直接帮助我们设计问卷。方便实施和分析。也方便进行数据挖掘。

问卷调查的意义

问卷调查是一种发掘事实现况的研究方式,最大的目的是搜集,累积某一目标族群的各项科学教育属性的基本资料,可分为描述性研究及分析性研究两大类。

在决定是否采用问卷法作为研究工具,应考量是否能顺利达成研究目标以及注意研究样本在问卷上的配合度,另外,问卷调查也有其优缺点,检视其特性配合研究主题,方能达成其目标。

研究者把所要研究的事项,做成问题或表格,再以邮寄或访问的方式,请有关的人照式填答的一种形式。问卷调查法,能使研究者直接由受试者获得资料,以测量受试者个人的所知所闻,个人的喜好与价值观或个人的态度信念,亦可以用问卷调查法去发现事实及经验或正在进行的事。

8. 数据挖掘的功能主要有

1、国家反诈中心APP是由公安部推出的一款手机防骗软件,集资源整合、情报研判、侦查指挥为一体,在打击、防范、治理电信网络诈骗等新型违法犯罪中发挥着重要作用。

2、当手机收到涉嫌诈骗的电话、短信或者下载安装了涉嫌诈骗的App时,可以智能识别骗子身份并及时预警提示,极大降低受骗可能性。

3、同时,用户还能通过国家反诈中心APP对非法可疑的电信诈骗行为进行在线举报,在使用手机过程中,如果发现可疑的手机号、短信,赌博、钓鱼网站,诈骗APP等信息,用户可以在我要举报”模块进行举报,后台会及时对可疑号码等进行封杀。

4、另外,国家反诈中心APP还会定期推送防诈文章,曝光最新诈骗案例,增强防骗意识,同时会根据不同年龄、职业等人群特点,测试被骗风险指数,防患于未然。

5、在涉及陌生账号转账时,还能验证对方的账号是否涉诈,包括支付账户、IP网址、QQ、微信等,及时避开资金被骗风险;可进行真实身份验证,在社交软件上交友、转账时,验证对方身份的真实性,防止对方冒充身份进行诈骗。

9. 常用的数据挖掘功能包括

分析数据有两种,

1列表法

将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。

2作图法

作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。

这个要看你分析什么数据。

分析大数据,R语言和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的统计学,不需要完全理解,重在应用。

分析简单数据,Excel就可以了。Excel本意就是智能,功能很强,容易上手。我没有见过有人说自己精通Excel的,最多是熟悉Excel。Excel的函数可以帮助你处理大部分数据。

一、掌握基础、更新知识。

基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。

数据库查询—sql

数据分析师在计算机的层面的技能要求较低,主要是会sql,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些sql技巧、新的函数,对你工作效率的提高是很有帮助的。

统计知识与数据挖掘

你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?

行业知识

如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。

一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业,在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于a部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:

对于a部门,

1、新会员的统计口径是什么。第一次在使用a部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?

2、是如何统计出来的。a:时间;是通过创建时间,还是业务完成时间。b:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。

3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。

4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?

在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写sql代码从数据库取出数据)。后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?

对于新进入数据行业或者刚进入数据行业的朋友来说:

行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?

但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写sql,那麻烦就大了。哈哈。。你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。

不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。

二、要有三心。

1、细心。

2、耐心。

3、静心。

数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。

三、形成自己结构化的思维。

数据分析师一定要严谨。而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。

四、业务、行业、商业知识。

当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。

这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。

如何提高业务知识,特别是没有相关背景的同学。很简单,我总结了几点:

1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。

2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。

3、每天有空去浏览行业相关的网站。看看行业都发生了什么,主要竞争对手或者相关行业都发展什么大事,把这些大事与你公司的业务,数据结合起来。

4、有机会走向一线,多向一线的客户沟通,这才是最根本的。

标题写着告诫,其实谈不上,更多我自己的一些心得的总结。希望对新进的朋友有帮助,数据分析行业绝对是一个朝阳行业,特别是互联网的不断发展,一个不谈数据的公司根本不叫互联网公司,数据分析师已经成为一个互联网公司必备的职位了。