数据挖掘问题驱动(数据挖掘解决的问题)

虚拟屋 2022-12-23 00:24 编辑:admin 147阅读

1. 数据挖掘解决的问题

第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。

第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。

2. 利用数据挖掘技术可以解决哪些问题

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。

第四,大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。

3. 数据挖掘解决的问题包括

答:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。

  预测分析和假设情况分析可帮助用户评审和权衡潜在决策的影响力。可用来分析历史模式和概率,以预测未来业绩并采取预防措施。

  预测分析可以帮助企业进行决策管理和绩效管理。

  决策管理是用来优化并自动化业务决策的一种卓有成效的方法,它通过预测分析让企业能够在制定决策以前有所行动,以便预测哪些行动在将来最有可能获得成功。由于闭环系统不断将有价值的反馈纳入到决策制定过程中,所以对于希望对变化的环境做出即时反应并最大化每个决策的效益组织来说,它是非常理想的方法。决策管理还可以优化成果并解决特定的业务问题,包括管理自动化决策设计和部署的方方面面,供组织管理其与客户、员工和供应商的交互。从本质上讲,决策管理使优化的决策成为企业业务流程DNA的一部分。

  滚动预测是预测分析的一种手段,采取滚动预测的公司往往有更高的预测精度,更快的循环时间,更少对财务团队的管理,更好的业务参与度和更多明智的决策制定。滚动预测可以对业务绩效进行前瞻性预测;为未来计划周期提供一个基线;捕获变化带来的长期影响;与静态年度预测相比,滚动预测能够在觉察到业务决策制定的时间点得到定期更新,并减轻财务团队巨大的行政负担。

  在自适应组织中,预测过程是相关且迅速的。具体来说,CFO 需要通过持续计划周期进行管理,让滚动预测成为主要的管理工具,每天和每周报告关键指,。同时需要注意使用滚动预测改进短期可见性,并将预测作为管理手段,而不是度量方法。

  在应用方面,预测分析能够帮助制造业高效维护运营并更好地控制成本,帮助电信等行业用户更深入地了解客户,还可以利用先进的分析技术为公众营造安全的公共环境。

  IBM SPSS预测分析可以帮助制造商最大限度地减少非计划性维护的停机时间,真正消除不必要的维护,并很好的预测保修费用,从而达到新的质量标准,并节约资金。它可用于生产线的预测分析,及时维护防止故障导致生产中断,可以解决一系列客户服务问题,其中包括顾客对因计划外维修和产品故障而造成停机的投诉。并可用于汽车、电子、航空航天、化学品和石油等不同行业的制造业务。

  同时,IBM 的犯罪预测和预防分析技术能够帮助各机构充分利用手中的人员和信息资源,监控、衡量和预测犯罪及犯罪趋势。分析警方数据,提供洞察,能够让警务人员跟踪犯罪活动、预测事件发生的可能性、有效部署资源并快速处理案件。IBM还可以帮助电信运营商采用实时分析和预测分析技术,更深入地了解客户,以发挥客户数据和资产的价值。

4. 数据挖掘解决什么问题

  数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。   机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。   它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。   自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。   自然语言处理(NLP)是计算机科学,人工智能,语言学关注计算机和人类(自然)语言之间的相互作用的领域。   他们之间的关系如下:   机器学习比较偏底层,也比较偏理论,机器学习本身不够炫酷,结合了具体的自然语言处理以及数据挖掘的问题才能炫酷。   机器学习好像内力一 样,是一个武者的基础,而自然语言和数据挖掘的东西都是招式。如果你内功足够深厚,招式对你来说都是小意思。但机器学习同时也要求很高的数学基础。   这三项并不是独立的选项,机器学习需要数据挖掘和自然语处理的支撑,自然语处理需要数据挖掘的支撑,数据挖掘需要大数据的支撑。最终所有的根源 都要落实在大数据上,而这一切的顶点就是人工智能。

5. 数据挖掘产生的原因

数据挖掘:Data mining,又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性(属于Association rule learning)的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。 举例:爬虫软件就是简单的数据挖掘 数据分析:数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。 数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。 举例:通过对大量数据的分析马云知道了杭州地区的女性的...

6. 数据挖掘解决方案

pycharm也就是python代码,数据挖掘就是通过统计学的原理找到数据之间隐藏的关系。所以,首先要懂得统计学的机器学习和深度学习原理,然后把原理通过python代码的方式写出来,把我们的数据代入代码的入口,最后进行验证,得出结论这就是数据挖掘。

7. 数据挖掘问题与解决方法

可能是依法采取的暂停措施,经过运营商核实后给与暂停服务。你确定自己没有违规使用的前提下,可以拨打10000投诉,要求解封。或是携带自己的身份证去营业厅处理。

大数据保护停机是为了保护大数据不在维护期间丢失,而采取的一种保护措施。它对海量数据进行分布式数据挖掘,依托云计算的分布式处理、分布式数据库和云储存、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。

8. 数据挖掘解决的实际问题

这个专业从总体上看还是比较好就业的。随着社会发展,各种信息犹如火山爆发一般能量巨大,为了应对工作和生活需要,此时信息检索与数据挖掘专业就显得非常重要,可以极大地提高工作效率,实现信息利用目的,随着形势发展,这方面人才需求猛增,相信你会被就业市场看好的。

9. 数据挖掘的六大问题

岗位是比较不错的,无论是在甲方还是在乙方,这个岗位都是比较瞩目的,在甲方公司的话一定要吃透业务,如果自己有追求不想论日子的话还是需要自己努力加油的,当然在甲方想要晋升除了能力之外就是处变能力,一定程度上说后者可能更重要;如果在乙方的话那就是实打实的要靠能力吃饭了,一般来说在乙方能学到更扎实、更时髦的技术,确实是能提高你的技术能力的。

要说到哪个公司靠谱的话,我觉得移动和电信都还不错,移动呢要稍微辛苦点,电信么稍微轻松点,这是相对而言啊,可能各省份或地市也有差别,乙方的话国内的华为,国外的sap、oracle、emc都还不错,像国内的ibm、hp这样的老牌个人感觉失去了企业文化,被潮流推着走。以上为一家之言,供你参考,有问题再追问。

10. 数据挖掘绝不能犯这11大错误

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘对象

1.数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

2.数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。

3.发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

数据挖掘步骤

在实施数据挖掘之前,先制定采取什么样的步骤,每一步都做什么,达到什么样的目标是必要的,有了好的计划才能保证数据挖掘有条不紊地实施并取得成功。很多软件供应商和数据挖掘顾问公司投提供了一些数据挖掘过程模型,来指导他们的用户一步步地进行数据挖掘工作。比如,SPSS公司的5A和SAS公司的SEMMA。

数据挖掘过程模型步骤主要包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。下面让我们来具体看一下每个步骤的具体内容:

(1)定义问题。在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

(2)建立数据挖掘库。建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

(3)分析数据。分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

(4)准备数据。这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

(5)建立模型。建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

(6)评价模型。模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。

(7)实施。模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。