1. r用于数据挖掘的包括
获得数据分析师认证证书,取得行业敲门金砖,并进而成功拿到心仪企业的Offer,是不少求职者的梦想。市场中的证书较多,有些是含金量高的,而有些是价值低的,大家一定要选择到好的认证。在这里给大家比较下目前市场中的数据分析类证书。
一般认证机构是两种类型,一种是国家部门认证,一种是行业性质认证。
l 国家部门认证
目前国家部门关于数据分析的认证还没有一个权威的机构。大数据属于新兴科技,一般前沿技术会先实践于企业之中,而相关部门的了解会有滞后性,所以关于大数据和数据分析的专业化技能、知识体系等主要是流行于高科技企业之中,在这个行业成熟之前,国家部门是无法颁发具备专业性兼具认可度和权威性的证书。目前有发证的机构是工信部、教育部、人社部,这几个部门发的证书更多是一个技能的证明,因为在他们管理的上千个认证中,根本无法做到专业,这些证书可能会在国有企事业单位中有一定的参考作用,但并不具有评职称作用,在大数据行业内也无人问津。
l 行业性质认证
1. SAS认证
SAS全球专业认证是由SAS公司颁发的、国际上公认的数据挖掘和商业智能领域的权威认证,随着我国DT环境和应用的日渐进步,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,会让您在数据挖掘、数据分析领域积累丰富经验奠定良好的基础。但是SAS面临的问题在于,越来越多的竞争性开源软件进入市场,如R语言,PYTHON,Spark等等,由于SAS昂贵的费用,导致自身软件的使用率下降,市场占有率低,在中国一般是大型银行有用到SAS,而其他单位的使用逐年减少。因此SAS证书对于大多数的数据分析人士来讲,如果你是倾向于找国有大型银行的工作,可以考虑;如果你是希望去北美发展,也可以考虑;但如果没有这种机会,最好还是考个其他的认证。by the way, Oracle的认证也类似,不过Oracle的认证没有SAS的好使
2. Coursera
Coursera是免费大型公开在线课程项目,由美国斯坦福大学两名计算机科学教授创办。旨在同世界顶尖大学合作,在线提供免费的网络公开课程。Coursera的首批合作院校包括斯坦福大学、密歇根大学、普林斯顿大学、宾夕法尼亚大学等美国名校。
Coursera证书是每门课程的结业证书,代表修过这门课程并具备相关技能,在美国来讲一些学校是认可的,对申报留学也许有一些作用,但是在国内来讲也更多是一个技能参考作用。by the way, edx也类似
3. CDA数据分析师认证
CDA认证是由CDA Institute发起,在国内由经管之家承办的数据分析师专业证书。是一套专业化,科学化,国际化,系统化的人才考核标准,分为LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ,涉及金融、电商、医疗、互联网、电信等行业大数据及数据分析从业者所需要具备的技能,符合当今全球大数据及数据分析技术潮流。每年6月与12月底在全国范围举办线下数据分析师考试,通过考试者可获得CDA数据分析师认证证书。CDA认证目前已被德勤(Deloitte)、苏宁、中国电信、重庆统计局等企业单位纳入到了内部员工的考核之中,并且来自百度、阿里、京东、惠普、中国银行、IBM、联想、移动、华为、尼尔森宝马、奔驰及政府部门等企业单位的员工有考取CDA认证,并获得了不错的薪资和职位。由于CDA数据分析师专注于数据分析和大数据领域,每年投入大量的资金和人力用于研发,目前CDA认证算是国内最具认可度、含金量最高的证书。
4. BDA认证
BDA是由中国商业统计学会设立的数据分析师培训与考试项目,为提高数据分析工作人员的业务素质。分为初、中、高三个级别,该认证近两年才出来,属于一个新的证书,目前还没有一定的知名度。相关的宣传网站建设还不完善,知识体系还不够强,不推荐大家考取。
5. CPDA认证
CPDA是中国商业联合会下面的二级分会颁发的证书,CPDA的实际意思是项目数据分析师,之前的培训重点在财务方向,自大数据火起来后,逐步往统计和软件方向靠,从品牌定位来讲不明确统一,并且这是培训绑定证书,必须缴纳高额的培训费用才能参加考试,并且多年来一直是只有一门几天的课程内容,不具有完整的知识体系,加上中国商业联合会也是一个非数据科学技术的协会,从专业角度来讲有一些水分。因其在宣传上推广力度大,知道其品牌的新人小白人士较多,但是从企业的认可来讲,参考意义不大。
其他的一些机构认证大多是自己公司的培训证书,就更没有参考价值了。
2. 用R语言挖掘公共数据库
E-R模型就是实体关系模型、是数据库设计概念设计的任务、
而概念设计的下一步就是产生关系模式的逻辑设计、
关系模式的规范化也在此时应用、根据E-R模型向关系模式的转换方法、
一般能够得到所有的关系模式、但是逻辑设计的结果不唯一、为了进一步提高数据库应用系统的性能、还应该根据需求适当的修改、调整数据模型的结构、此时引入了规范化理论。
所以、我觉得E-R模型只是把现实世界的信息抽象为概念性的信息、然后转化为关系模型、得到的关系模型并不是完美的、应该只是符合第一范式、但是通过逻辑设计的规范化优化、应该能最低达到第三范式。
没有第一范式、就没有第三范式、但是我们应用中设计的关系模式必须能达到3NF。
选A吧。
3. 用R语言进行数据挖掘
特殊应用:人工智能 人工智能上,prolog和lisp是宠儿。 R语言有时也被用于数据挖掘(但是太慢了)
4. e-r图适用于建立数据库的
e-r图是相对于概念模型而言的,在数据库中有严格的界定,是p.p.s.chen于1976年提出的实体-联系方法(entityt-relationshipapproach).该方法用e-r图来描述现实世界的概念模型.e-r图提供了表示实体型\属性\和联系的方法;
▲实体型:用矩形表示.
▲属性:用椭圆形表示.
▲联系:用菱形表示.
注:我们用的是<数据库系统概论>第三版,你找本书看看.相信你的能力..
5. r用于数据挖掘的包括什么
reply reuse recent等
6. r与数据挖掘
R 是一种免费的、开源的语言和操作环境,其初衷是为了统计计算和画图,但是 R语言现在能够做的事情已经远远地超出了其初衷,可以在诸多领域进行应用,比如,数据挖掘、机器学习、社交网络、生物信息、金融数据分析等。
同时,R 提供了成千上万的专业模块和实用工具,是从大数据中获取有用信息的绝佳工具。
7. r语言数据挖掘期末试题
团名: Tension
团员: 5名
成军: 1998 .10
成军地: L.A.
平均年龄: 26
平均身高: 176
个性: 美国小孩的easy-going、阳光特质、好动活泼 、高学历的气质内涵
专长: 美声, 美国西岸舞蹈, 音乐创作, 运动, 语言(英,国,粤,法,日,韩)
发掘者: R&B音乐教父 陶吉吉
擅长曲风: R&B/Hip-Hop/Ballad
8. r语言与数据挖掘答案
可以看看开课吧这个课程,感觉还是很不错的。
近日,开课吧与百度、微软、阿里、滴滴以及创新工场等头部企业展开深度合作。至此,开课吧系统化课程《大数据分析全栈工程师》将注入更多“大厂脱敏数据、实战项目、云服务等”新鲜血液,而课程内容将更加丰富,实战性也将更强。
重要的是,Boss直聘、猎聘网等多家就业招聘企业也同开课吧达成合作,可为毕业生提供优先推荐服务,绝不让薪资就业成为难住学员的问题。
大数据分析全栈工程师 课程招生
全新改版,深度可达阿里P7
多名一线数据科学大师倾力指导
(前腾讯、美团、百度)
找工作拿不到 offer 退学费
本课程由廖雪峰老师团队倾情打造,围绕企业用人标准,多次调研百度、腾讯、阿里、美团、头条、滴滴等互联网企业,深入了解一线大厂针对数据分析 / 数据挖掘 / 数据科学需要掌握的必备技能,再结合各大招聘网站对该岗位的要求以及行业专家和技术大牛的建议,全新打造的数据科学相关的课程。
一 、课程简介
1.1 面向希望自己能够在4-6个月内找到一份数据分析师、业务数据分析师、数据挖掘等岗位的同学以及数据驱动的业务工作者。本课程尤其适合:
业务部门的运营、产品、管理、业务分析等谋求数据驱动业务的工作者;
目前从事数据分析师想晋升专业数据分析师或基于互联网平台的大数据分析师的在职人员;
数学、统计、金融、财务、计算机等相关专业的高年级本科生或研究生;
从事Python开发或传统IT技术开发,想往数据分析/数据挖掘方面转行的朋友;
对数据科学具备一定的热情,希望能够从事相关行业或者自己创造相关产品的人员;
对数学、编程具有一定的热情,对数据敏感的人员;
1.2 关于退还学费:报名就业班的同学,报名伊始既签订合同,若上完课程拿不到 offer 或者 offer 初次就业薪资达不到年薪19万,既退还学费。
二、五大实战项目
三、课程内容
课程持续时间为4个月,内容包括:
1. 主修专业课程;
2. 选修拓展课;
3. 个性化项目作业评审,全程进度督促与问题解答;
4. 模拟面试、简历修改、背景提升等职业生涯辅导;
5. 在线大数据实验平台。
2.1 主修专业课程
主修课,周期一共4个月,100课时,共3大部分:
1)数据分析之禅
2) 数据分析之道
3) 大数据分析之术
2.2选修拓展课
选修课《R语言之数据挖掘实战》,每位同学均可免费选修学习,这是针对不同基础的同学设计的专项强化课程。学不学这块不影响就业,总共30课时左右。
四、师资介绍
除了我们的课程老师,为保障课程质量,我们为大家组建了相应的助教团队,助教团队负责我们的日常答疑和作业、项目批改。
助教团队:
张师兄:前小米数据分析师,精通大数据平台数据分析,精通Hive;
张师姐:前瓜子二手车数据分析师,精通Excel数据可视化,Python数据分析;
潘师兄:前搜狐数据分析师,精通Python、SQL、Tableau
五、课程优势介绍
1. 内容由浅入深,层层递进:课程第一部分完全按照零基础的学员能力设计,涵盖基础的Excel操作,Excel数据可视化,认识和熟悉工具;紧接着第二部分刚开始的Python基础,也是照顾零基础的学员,慢慢的深入,到后面的数据科学库numpy、pandas等;再到第三部分的基于Hadoop平台的数据分析和建模,数据挖掘算法,层层递进和加深,尽可能让有基础和无基础的同学都能跟得上并学会,在学员入门过后再加深难度。
2. 既有深度,又有广度:目前市面上几乎所有的数据分析课都是基于Python和Excel的那一套,再穿插点数据挖掘的入门,千篇一律。我们调研后发现,几乎所有大型互联网企业招聘数据分析师都要求掌握大数据平台的数据分析,如Hive,而课程的第三部分就完全包含这些,这是我们课程的独家特色,且占比达整个课程的50%左右,这块就是拉开薪资的地方,就是区分传统数据分析师和大数据分析师的地方。
3. 纯大型互联网企业师资:课程的设计和讲解都来源于纯一线大型互联网企业导师(top10互联网企业),导师即是讲师,也是企业里的数据分析师,也是企业的数据分析师面试官,掌握和熟悉一切主流的技术方案和方法论。来源于企业,输出到企业,这是我们的课程跟其他课程的本质区别。
4. 课程结果保障:选择课程就业班的同学,报名伊始既签订协议,若完成课程拿不到 offer 或者初始就业税前年薪低于19万/年(限北上广深杭),则退还学费。
5. 全程进度督促:大家学习一门知识,善始者实繁,克终者盖寡。下定决心学习只是第一步,坚持学习完毕才是重中之重。我们课程组老师和助教会全程督促各位同学完成课程。
6. 线下大咖见面会:我们会不定期组织线下交流会(限北上广深杭),届时会邀请廖雪峰及各位一线大厂的数据专家跟大家见面交流,促进行业发展和个人圈子发展。
六、你需要达到什么样的预备能力
依据往期学生的经验,要能完成以上学习任务需要具备以下背景能力:
至少具备大专学历,本科及硕士以上学历更佳;
持续自学能力,能够每周投入12小时以上(6小时上课,6小时作业),持续4个月进行学习;
具有良好的逻辑思维能力;
有编程语言基础优先。
注:不具备预备能力的同学,我们为您提供了预修课程(Excel、Python和MySQL),帮助大家做好开课前的知识铺垫。
七、学费、资助与质量保障
通关班:7980元
就业班:17980元
本次课程培训为期时长4个月,通关班与就业班的课程内容一致,但是就业班会签订就业协议。
分期付款:本课程可以为同学提供 3、6、12 期分期付款;
退还学费:报名就业班的同学,报名伊始既签订协议,若完成课程拿不到 offer 或者初始就业税前年薪低于19万/年(限北上广深杭),则退还学费。
前3次课不满意无理由退还学费:正式开课后前3次课不满意,学员可提出退还学费,课程组将无理由退还学费。
八、报名流程与重要时间节点
九、学员评价
左右滑动查看更多
十、相关问题答疑
Q:如何看待数据分析师这一岗位能力要求?
A:最简单的办法就是直接去招聘网站观看,你会发现,岗位需求里面的描述出现最多的技能有Excel、SQL、Tableau、Hive、Python/R等这些,而经过我们调研多位一线大型互联网企业导师发现,在大型互联网企业,Hive SQL是用的最多的,也是最重要的技能之一,也是数据分析师和大数据分析师的本质区别,也是拉开薪资的重要技能之一,而这一块几乎也是我们大数据分析课程的重中之重,内容占比达50%左右。
Q:Python工程师的出路在哪?
A:随着这几年AI人工智能的火爆,带动了Python的热潮,各种Python课程如雨后春笋般的涌现出来,80~90%的内容都是Python Web方向,因为AI人工智能门槛太高。所以普及大众,如果学Python,大部分都是往Python Web方向引,要学Python基础、然后学Flask、Django、然后学一点运维的知识,但是这么干基本上没法就业。因为Python Web方向市场太小,以至于现在基本上是个伪方向,不可否认Python可以写接口,用作网站的后端,但是这么干的公司极少(这相当于是抢Java和PHP的饭碗),所以就导致没有就业的岗位,同时也导致了很多人学Python交了几万块学费无法就业的场景,要么转行要么放弃。
除了门槛较高的AI必须掌握Python,数据分析和数据挖掘方向倒是一个门槛相对较低且不错的发展方向。爬虫和运维也是Python的方向,但是相对来说,岗位太少,太传统,竞争力不大。真要做运维,十年前就可以,为什么是现在?
Q:请问就业班对于任何人都适用吗?
A:报名的同学我们都会联系大家,了解大家的情况之后具体做出建议。就业班对同学是有一定要求的。
Q:学完课程能达到什么水平?
A:依据上一期的学员情况,学完课程的同学,能够达到以下能力要求:
熟练掌握数据库MySQL基本使用,精通SQL语句和Hive SQL;
熟悉数据挖掘的思路和常用的数据挖掘算法;
熟练掌握Excel、Power BI、Tableau等数据分析可视化工具;
掌握Python/R;
能够对崭新的问题进行建模分析,使用已知知识进行解决;
具备应对 BAT 级别相关岗位面试的能力。
最后,感谢大家阅读至此,希望之后能与大家度过一个忙碌而又丰富的学习历程。
注:由于添加人数较多,教务老师没法第一时间一一通过,请耐心等待。
附:1、线下交流会现场
9. r语言数据挖掘方法及应用pdf
为R语言,一种自由软件编程语言与操作环境,主要用于统计分析、绘图、数据挖掘。R本来是由来自新西兰奥克兰大学的Ross Ihaka和Robert Gentleman开发(也因此称为R),现在由“R开发核心团队”负责开发。R是基于S语言的一个GNU计划项目,所以也可以当作S语言的一种实现,通常用S语言编写的代码都可以不作修改的在R环境下运行。R的语法是来自Scheme。 R的源代码可自由下载使用,亦有已编译的可执行文件版本可以下载,可在多种平台下运行,包括UNIX(也包括FreeBSD和Linux)、Windows和MacOS。R主要是以命令行操作,同时有人开发了几种图形用户界面。
10. r用于数据挖掘的包括哪些
(1)R是统计分析、绘图功能的自由开源软件,拥有完整体系的数据分析和挖掘工具,能够有效的数据存储和处理;
(2)R语言向量化运算功能强大,R语言使用apply函数系列取代传统的for循环做运算节约内存和时间。
(3)R有丰富的数据挖掘工具包(Packages)方便使用。拥有完整体系的数据统计和分析工具,为数据分析和显示提供的强大图形功能;
(4)R是一种面向对象的编程语言,和其它编程语言及平台、数据库之间有很好的接口。它是一套完善、简便而有效的编程语言(源自S语言),可操纵数据的输入和输出,可实现条件、分支、循环及自定义函数